

Title: Playable Design

Abstract:
The computer game industry is currently facing problems on how to structure and
manage a production due to the cause of ever growing budgets and manpower required.
Methods from other fields have been tried. However, these are not built with the purpose
of developing games and do not facilitate the entire production or qualities of a game. We
have during the course of the project addressed this matter by devising a method of our
own which should enhance the process of creating games. A deeper analysis of current
computer game developments identified the main problems to occur in the pre-production
which suggests that this is where the point of insertion should happen. We have based our
solution on theory from fields such as software engineering, innovation theory and game
design theory and supplied these by observation made through experiments where we
simulated parts of a game production. The result is the EVE method, which stands for
Experimentation, Visualization and Evaluation and is based on principles of creative process
control, flexible design in form of prototypes and easily accessible feedback through early
testing.

____________________ _____________________
Bo Behrmann Jensen Simon Larsen

____________________ _____________________
Frank Wisnes Thorvald Kingbo

Supervisors: Espen Aarseth & Claus Seeberg Friis
Circulation: 4 copies
Page Count: 212
Project period: September 1, 2006 – March 1, 2007

Media Technology and Games -
Design & Analysis

IT-University of Copenhagen
Rued Langgaards vej 7

2300 København S.
Tlf. 72185000

www.itu.dk

Chapter 1 - Table of contents Playable Design

Page 4 of 212

1 Table of contents

2 FOREWORD .. 8

2.1 READERSHIP .. 9

2.2 ACKNOWLEDGEMENT .. 9

3 INTRODUCTION .. 11

3.1 PROBLEM AREA .. 12

3.1.1 Problem statement .. 14

3.1.2 Project scope .. 14

3.2 PROJECT OVERVIEW .. 16

4 GAME DEVELOPMENT FROM THE OUTSIDE ... 18

4.1 FACTS ABOUT THE INDUSTRY ... 18

4.1.1 Development time .. 19

4.1.2 Budget .. 20

4.1.3 Team size.. 21

4.1.4 Conclusion .. 22

4.2 GAME PRODUCTION ... 23

4.2.1 Game Design versus Game Development .. 24

4.2.2 Game Design .. 24

4.2.3 Game Development ... 26

4.3 SOFTWARE DEVELOPMENT ... 27

4.3.1 The Waterfall Method .. 28

4.3.2 Spiral Development .. 31

4.3.3 Agile methods .. 33

4.3.4 Extreme Programming ... 33

4.4 FUN FACTOR .. 35

March 2007 Chapter 1 - Table of contents

Page 5 of 212

5 GAME DEVELOPMENT FROM THE INSIDE ... 37

5.1 BIG DESIGN UP FRONT .. 37

5.1.1 Waterfall versus Agile .. 38

5.1.2 The Design Document .. 40

5.1.3 Burnout .. 42

5.2 POST MORTEMS .. 43

5.2.1 Flexibility .. 43

5.2.2 Documentation .. 45

5.2.3 Pre-production and the vision .. 47

5.2.4 New ideas .. 49

5.3 LESSONS ... 50

6 CASE: IO INTERACTIVE .. 52

6.1 IDEA GENERATION .. 53

6.2 PRE-PRODUCTION .. 54

6.3 PROTOTYPES ... 55

6.4 CONCLUSION ... 57

7 ADAPTIVE GAME DESIGN ... 60

7.1 DESIGNING VERSUS MAKING ... 60

7.2 PLAYABLE DESIGN ... 62

7.3 UNCANNY VALLEY .. 63

7.3.1 The Space Pen .. 65

7.4 READY, FIRE, AIM ... 66

7.5 EVE AS A METHOD SUPPLEMENT ... 67

7.5.1 The experiments ... 68

8 EXPLORATION .. 71

8.1 INTRODUCTION .. 71

8.2 GETTING THE GREAT IDEA ... 71

8.2.1 The process of creativity .. 73

Chapter 1 - Table of contents Playable Design

Page 6 of 212

8.2.2 First insight ... 75

8.2.3 Saturation .. 76

8.2.4 Incubation .. 77

8.2.5 Illumination .. 80

8.2.6 Verification ... 84

8.2.7 Game mechanics .. 87

8.3 FROM THEORY TO PRACTICE .. 90

9 FEEDBACK AND COMMUNICATION .. 91

9.1 SHORT FEEDBACK CYCLES .. 93

9.2 COLLECTING FEEDBACK .. 95

9.2.1 Sharing ... 96

9.2.2 Short and simple .. 97

9.3 PRESS ‘OK’ TO CANCEL .. 99

10 FLEXIBLE DESIGN .. 101

10.1 PLAYING THE GAME .. 105

10.2 DELAYING DECISIONS .. 107

10.3 SET-BASED DESIGN ... 109

10.3.1 Land of the Rising Sun ... 110

10.3.2 Design more .. 111

10.3.3 Design more to save money .. 115

10.3.4 Solution Space ... 117

10.3.5 Designing in modules .. 118

11 TESTING ... 120

11.1 VERIFICATION AND VALIDATION .. 120

11.2 TESTING IN THEORY .. 121

11.3 PRACTICAL APPROACH .. 125

11.4 SUMMARY .. 127

March 2007 Chapter 1 - Table of contents

Page 7 of 212

12 THE EVE METHOD ... 128

12.1 EXPERIMENTATION .. 131

12.2 VISUALIZATION.. 132

12.3 EVALUATION ... 135

12.4 A DAY IN THE LIFE OF A RAPID PROTOTYPER ... 137

13 CONCLUSION .. 139

14 FUTURE RESEARCH ... 143

15 APPENDIX A – INTERVIEWS .. 145

15.1 INTERVIEW WITH THE PRODUCER OF HITMAN 5 ... 145

15.1.1 Set-up .. 145

15.1.2 Transcript .. 145

15.2 INTERVIEW WITH A GAME DIRECTOR FROM IO INTERACTIVE .. 175

15.2.1 Set-up .. 175

15.2.2 Transcript .. 175

15.3 E-MAIL INTERVIEWS ... 192

15.3.1 Set-up .. 192

15.3.2 E-mail interview with the technical producer of Hitman 5 193

15.3.3 E-mail interview with the technical producer on Kane & Lynch 196

15.3.4 E-mail interview with the head of the tools department .. 199

16 APPENDIX B – POSTMORTEM SOURCE MATERIAL .. 202

17 BIBLIOGRAPHY ... 203

Chapter 2 - Foreword Playable Design

Page 8 of 212

2 Foreword

During the last decades computer games have experienced a rapid growth

and have gone from being part of a subculture to being an accepted way to

entertain you. The request for bigger, more complex and of course funnier

games has created an industry which tries to translate the demands of the

consumer into innovative design that can entertain for hours and hours, no

matter the costs. A common analogy is to compare the game industry with

the movie industry and Hollywood, where movies have gone through the

same development, as games currently are doing, meaning an expansion in

both complexity and budget. The d ifference between the two media is that

movies are an established field with well known theories and guidelines of

how to create a good movie. Since computer game theory is a fairly new field

the point of agreement has yet to come - scientists is still d iscussing how to

analyze games and what characteristics that makes a good game. This makes

the whole situation surrounding game development all the more d ifficult. If

you are to decide whether or not to invest millions of dollars into a game, one

could imagine that you would be interested in knowing if the concept would

attract buyers and thereby being worth investing in. This problem area is

what we have tried to explore during the course of this project. We have d e-

vised a method which can help developers and investors to obtain the appr o-

priate knowledge to make a qualified decision on whether or not an idea is

worth pursuing. The method supplies a framework and tools from which

game designers can test both new ideas and improve already existing ones.

To form a solid foundation for our method we have found inspiration from

industries which share similarities with the game industry. Furthermore the

method is based on observations from experiments performed to validate

theory and our own supplements developed during the project.

March 2007 Chapter 2 - Foreword

Page 9 of 212

2.1 Readership

The project was developed during the fall/ winter semester of 2006-2007 as

part of the Master degree in "Media Technology and Games - Analysis and

Design" at the IT-University of Copenhagen and was handed in March 1,

2007. The report is aimed at game developers and companies who want to

improve or change the way they currently are handling development of

games. The report assumes that the readers have a general knowledge of

games and to some extent are familiar with software development. The report

is d ivided into three main parts; an analysis of the evolution within the com-

puter game industry based on information from post mortem articles and in-

terviews with employees at Io Interactive, a theoretical perspective where

known theories on the topic is examined along with findings made through

our own observations, and finally "The EVE method", where we introduce

our suggestion of how to approach game development.

During the report we have chosen to include case studies from post mortem

articles in the report in order to exemplify and substantiate the theory pr e-

sented . These will be separated from the text and be placed in text -boxes

along with a brief explanation to how and why it fits the theory.

2.2 Acknowledgement

As part of the project we have worked closely together with the game devel-

opment company Io Interactive, located in Copenhagen, and would like to

thank them for opening their door and helping us during the course of the

project. We would particular like to thank Thomas Howalt, Jesper Donnis

and Mads Prahm, all from Io Interactive, for going beyond the call of duty

and sharing thoughts and ideas on the topics addressed in the report. Fu r-

thermore we would like to thank Helle Marijnissen, Jeremy C. Petreman and

Chapter 2 - Foreword Playable Design

Page 10 of 212

all the other people who provided us with information abou t the work pro-

cedures used at Io Interactive.

March 2007 Chapter 3 - Introduction

Page 11 of 212

3 Introduction

Like Christopher Columbus leaving the Spanish port of Palos, we too start a

journey towards uncharted waters. Columbus set out to find a western route

to the promised Orient in hope of prosperity and acknowledgement, and

even though he failed in his quest, it

led to one of the greatest d iscoveries

in history. He thought he knew

what he was going to find on the

other side of the horizon, but to his

surprise he found a new and per-

haps better treasure - America. Like

the quest of Columbus the uncer-

tainty of game design is both excit-

ing and terrifying, and when ex-

amined closer you find more similarities between these. One could say that a

game designer faces the journey of Columbus every day - to sail into waters

where no one has yet dared to go. The job of a game designer is to set out

with a blank map, hoping to find new lands to explore, before he reaches the

edge of the world . Luckily Columbus had his compass to guide his way.

Game designers are not so fortunate to have a tool to keep them on a right

track at all times, when searching for new ideas. This is what we hope to

change with this project. To create a method which helps to chart unfamiliar

territory and at the same time create a "map", which help s to find the undis-

covered treasures; new game ideas and knowledge surrounding these.

Chapter 3 - Introduction Playable Design

Page 12 of 212

3.1 Problem area

That was the very centre of his genius - he invented things that anyone could

have thought of, and men who can invent things that anyone could have

thought of are very rare men. -Pratchet t 2001, p. 37

The quote by Terry Pratchett is really the essence of every creative process -

some people have the ability to invent things that we all think, we could have

thought of the moment we see them. The brilliant ideas which shape the gen-

erations to come are often the simplest ones, both in appearances and usabili-

ty. We all know the situation where we think "why d idn't I think of this?", but

the harsh reality is that most of us do not have the ability to see the potential

in the little things. Can w e learn it? Maybe - the truth is that some people

have a natural talent for generating ideas, but maybe with the right tools

more had the chance to become a great architect, artist or game designer. Im-

agine if we could devise a method which could help us shape and evaluate

our ideas. This could give us a foundation to decide if it is worth investing

time and money into.

Every industry handles their creative process in d ifferent ways based on

years of experience with various approaches. Take a look at the software in-

dustry for example, where many d ifferent methods have evolved to ensure

quality and usability of the end products. From big and complex methods

and frameworks to simple and fixed guidelines; they all try to standard ize the

process from initial idea to final release in order to ensure that the customer

receives a usable product. Some methods have been used since the dawn of

computer science while new ones emerge constantly according to changes in

society, e.g. working conditions, know -how in the general population and po-

litical decisions. A branch of the software development, which over the last

decade has evolved from a small enclosed industry to a billion dollar indu s-

March 2007 Chapter 3 - Introduction

Page 13 of 212

try with thousands of people employed, is the computer game business. The

explosion in numbers of people playing games have brought an enormous

amount of capital into this business, and by doing so creating larger devel-

opment cycles and teams, which again requires the companies to develop m e-

thods, similar as those the trad itional software industry is using, to handle

this new situation. The need for such methods is only increasing and at th is

point it is hard to find one which can be adopted d irectly for computer game

development. So why not just change and adapt the methods already devel-

oped for trad itional software to the gaming industry? The mismatch between

the preconditions for ord inary software compared to those of a computer

game makes many of the methods unusable in the context of a game. Trad i-

tional software is built on the concepts of functionality and usability - the us-

ers must be able to do what they want in a simple and unmistakable way -

whereas a computer game's most valu able asset is what is known as the fun

factor - a game must be fun to play. This makes the two kinds of software

somewhat d ifferent and requires that we handle them in d ifferent ways. The

preconditions of trad itional software are both measurable while it quickly be-

comes hard to measure whether or not something is fun.

Does this mean we cannot develop a method which takes the inherent quality

of a game into account? No, it does not - we just have to build a method

which is based on this and not solely those of trad itional software. During

this project we will devise a method from which games can be developed

with the viewpoint on how a game works. We will stand on the shoulders of

others, meaning that we will not develop a whole new method but instead

use proven practices from other methods and mix it together with observa-

tion done through our own experiments. Our main focus will be on the d e-

sign and conceptualization process where our intention is to provide tools to

handle the process by visualizing and evaluating a concept. This should give

Chapter 3 - Introduction Playable Design

Page 14 of 212

a developer the possibility to scrap bad concepts early on in the development

and thereby save time and money. We wish create a way of working which

raise the chance to become a “genius” like the person, Terry Pratchett d e-

scribes.

3.1.1 Problem statement

This project will outline a method based on proven practices which can en-

hance and support the process of creating, exploring and evaluating ideas in

the context of game development.

3.1.2 Project scope

During this section we will try to clarify how we intend to devise our method

and what we hope to achieve by doing so. The method we suggest will con-

tain three elements - Experimentation, Visualization and Evaluation - where each

stage will help a game designer to create his vision and thereby making him

able to communicate this to others. The idea behind our method is that it can

work in multiple phases of the development process but will be formulated

with the intention to be used in a specific situation, namely the design and

conceptualization process. Our focus is to create a way of working with game

design, which hopefully can be used in other situations as well, but for the

sake of simplicity we will limit the scope and focus to this area.

A computer game is a composition of many elements that requires d ifferent

design approaches. To avoid making a method which aims to solve every-

thing and end up solving nothing we have chosen to d ivide the components

of a game into three sub-categories and then to focus on one of these. The

three categories are:

March 2007 Chapter 3 - Introduction

Page 15 of 212

 Game mechanics - rule-set, controls, actions, behaviors within a game

context.

 Setting - background story, theme, universe, scenario, setting sur-

rounding the game.

 Art - visual and audio elements presented by the game to the player.

A more elaborate explanation of these concepts will be presented in chapter 8.

The categories can be seen as a trinity where each improve or amplify the

others; however, it is our opinion that they are of d ifferent importance. We

believe that the essential part of any game is the game mechanics. Why? Bad-

ly designed mechanics leaves a player with a poor experience - if you do not

do the job right when designing these you risk designing a game no one likes

to play. In addition, if the story and art is prioritized over mechanics we

might as well call it a technical demonstration, interactive story or something

else, because the values that make it a game is lost - a game will not suddenly

become good just because a story or extravagant graphics is added . One

could say that the core of the game is the game mechanics while the other

elements only help to amplify the player experience. Therefore we have ch o-

sen to aim our method to handle game mechanical issues that facilitate the

gameplay experience, consequently we will not elaborate on how to make a

story, create animations or elements such as these.

The method is intended to be used by developers and companies to stren g-

then the game design process. However since we have limited our scope to

this part of a game development, we feel that it is important to explain how

our method fits game development in more general terms. Therefore we will

also take a closer look at methods currently used in the game industry and

software industry and afterwards elaborate on how we adapt a method to

this scenario. Besides the practical approach we also hope this project will

add to the ongoing d iscussion in both the academic world as well as the gam-

Chapter 3 - Introduction Playable Design

Page 16 of 212

ing industry on how to create fun games within the boundaries of time and

money.

3.2 Project overview

During this section we will clarify how we intend to proceed with the project

and how our report will be structured . In order to understand the context in

which our method should work we will make an analysis of how the game

industry is currently working. The analysis is d ivided into three sections –

first, a broader introduction to computer game development; what is it and

how to it relates to other design approaches. Secondly an analysis of post-

mortems
1
, where we will examine how known games have been develop ed,

and try to understand the pros and cons of the way d ifferent companies ap-

proached their respective developments. Lastly Io Interactive has given us the

opportunity to explore and understand their way of working. Therefore we

will perform a series of interviews with people in leading roles at Io Interac-

tive, which hopefully, along with the post-mortem analysis, should give us a

picture of how, where and why problems occur in a production.

Besides game theory we will study other fields which have similarities with

game development and hopefully get inspiration for how we can frame a me-

thod to fit a design process when creating games - one could say we want to

map known design theories to game development. We will examine fields

such as Innovation and Design, Software Engineering, Organization theory

and Interaction Design. Furthermore, in order to validate our method we will

perform a series of experiments. These should give us an idea of how to map

the d ifferent tools and techniques used , in relationship to each other. The ex-

periments will be a combination of groups of one, two or four persons where

1
 For more information on post mortems refer to page 39 in chap ter 5.2.

March 2007 Chapter 3 - Introduction

Page 17 of 212

the purpose is to develop a small prototype by using concepts from theory

and our own ideas or supplements, in a development cycle of one week. We

will carry out 6 of these experiments where each week will present a new

theme to each person or group. The development cycle will include ever y-

thing from idea and design, implementation, and play testing phase. It

should resemble the situation we intend our method to be used in and at the

same time give us the possibility to extract how and what will work in a

game development process. Lastly, and in order to answer our problem

statement, we will present our suggestion of how a design process can be

structured , based on our analysis and experiments, in order to fit and make

sense in a game development context.

Chapter 4 - Game development from the outside Playable Design

Page 18 of 212

4 Game development from the outside

This chapter will take a look at the current situation in the game industry, and

give a brief overview of its development from small scale to large scale pro-

ductions; looking at how development methods have changed and how the

industry views itself and its own methods. We will also take a look at the d e-

velopment within the software industry, and briefly compare the two fields.

But first we will look at some hard facts from the industry.

4.1 Facts about the industry

Game development is becoming ever more expensive, and while the time

span of the productions has not changed much, they include more and more

people. While definite numbers backing up these claims are hard to find , post

mortem articles in Game Developer and on the website Gamasutra.com is one

possible source of facts. A post mortem is an article written after a project d e-

scribing the project from a "what went right”, “what went wrong" point of

view. These articles include development time, budget, and the number of

full time developers for each of the projects. Using this as our source of in-

formation, we will over the next few pages compare game productions over

the last 8 years
2
 and look at the d irection in which the industry is moving. It is

worth noting that these numbers have been collected after the completion of

the project, which means that a game being in development between 2000

and 2002 with a release date in 2002, will show up in the statistics as a 2002

entry. Appendix B lists the entire source material for the graphs presented on

the following pages.

2
 From March 1998 to November 2006.

March 2007 Chapter 4 - Game development from the outside

Page 19 of 212

4.1.1 Development time

Figure 1: The average development time in months.

The average development time of productions seem to be rather consistent.

There are d ifferent games in the analysis that took very little time and very

long time to develop, but the average production time is stable at around 25

months. In other words, roughly two years from concept to finish game on

the store shelves. The interesting thing to observe here is the thing that the

graph is not showing; how the time is spent. Some productions go from the

conceptual phase to fu ll production in a matter of months and others spend

12-18 months in pre-production before moving onto full production. Reasons

for this vary greatly; for some it a mere matter of trying to nail the concept

that leaves them in the pre-production phase for longer than average, and for

others the game they are producing is a sequel in an already firmly estab-

lished franchise, that requires less pre-production which means the team is

more likely to move to full production earlier.

Chapter 4 - Game development from the outside Playable Design

Page 20 of 212

4.1.2 Budget

Figure 2: The production budget in millions of dollars.

More interesting is it to look at the average development budget. Unfortu-

nately the information about the production budgets was not always availa-

ble in the postmortem articles. But since the trend is so clear that we must a s-

sume this is d irective for the rest of the productions. From 1998 to 2001 the

overall budgets seems be somewhat stable around 2.5 million dollars per

production
3
, and then the budget goes into a steadily rise from 2001 and on-

wards to end up with an average bud get of no less than 13.5 million dollars in

2006. That is a rise of no less than 540%. Games are becoming more and more

complex both graphically and technically, and for companies to be able to

3
 It goes from 2 to 4 million dollars, but on average it is 2,59 million d ollars for the entire p e-

riod

March 2007 Chapter 4 - Game development from the outside

Page 21 of 212

compete with the general marked they ramp up the number of people work-

ing on the production in order to complete the game in time. That is, of

course, if that is the parameters the developers choose to compete on. There is

a major problem with this development. The prices of the games have stayed

the same over this entire period , and if inflation is factored in the prices can

be said to have gone down. While more games are being sold today then 5

years ago, this increase is nowhere near the increased cost of development.

4.1.3 Team size

Figure 3: Number of full-time developers on each production.

A similar trend can be seen in the steadily increasing number of developers

working full-time on the productions. Seeing as the single most cost consu m-

ing element of game development is wages, this comes as no surprise. The

sudden increase in the number of developers just around 2001 might be con-

Chapter 4 - Game development from the outside Playable Design

Page 22 of 212

nected with the release of the Playstation 2 the previous year, ind icating that

new consoles and more advanced technology requires a larger development

team. Peter Jackson' s King Kong pull the average number of developers rather

high in late 2005 since it had no less than 280 full-time developers working on

it at Ubisoft. But the fact that more developers are working on each produ c-

tion remains intact, and whether or not this trend will continue remains to be

seen. While you would think that there is an upper limit as to how many d e-

velopers will fit in a single production, King Kong shows how that limit is

higher than 280.

4.1.4 Conclusion

Figure 4: Comparing the number of developers and the production budget.

The trend is clear when the two graphs are combined . The graph above clea r-

ly shows where the money is being spent in game development. Hardly su r-

March 2007 Chapter 4 - Game development from the outside

Page 23 of 212

prising material, since almost all of game development is about the know-

ledge and skills the individuals‟ team members brings to the productions.

Since the numbers themselves do not reveal much about the day-to-day pro-

ductions, all we can conclude from this is that game development is indeed

becoming more expensive because of the rise in the number of people work-

ing on each project. However, the revenue does not scale at the same rate as

the development cost increases, meaning that “throwing more people at the

problem” will soon stop being a viable economical solution to increasingly

more complex productions.

4.2 Game Production

Even with all this, game development as a field is still in its childhood. While

the first commercial games are over 35 years old
4
, the industry were long

dominated by a small group of dedicated individuals. They were the self-

taught, first-generation game designers, build ing games alone or in the com-

pany of a few friends while laying the groundwork for the multi-million in-

dustry we have today. As time passed and the game development

teams grew from a single person to teams of several hundred people, so d id

the design and development setting change.

Lately, some of the veterans of the industry have given their suggestions as to

how game development should be done, either through lectures, books, or

articles like the ones found on the website Gamasutra.com and in Game De-

veloper Magazine. Even so, the majority of the literature on games concerns

itself with game design more than game development. So let us start off by

4
 The first successful commercial game was Atari‟s Pong, released in 1972.

Chapter 4 - Game development from the outside Playable Design

Page 24 of 212

d rawing the d istinction between game design and game development before we

do anything else.

4.2.1 Game Design versus Game Development

If we were to draw a line in the sand , one way to do it would be to say that

game design is a part of game development, while game development is the

entire process from initial idea to the final product. This is not entirely true,

but it works as a black and white categorization. One could say that the two

are completely separate, but again it is all a qu estion of practical application.

Andrew Rollings and Ernest Adams (2003) have little trouble focusing purely

on game design in their book, while Julian Gold (2004) on the other hand al-

most completely ignores the design aspect when he talks about game devel-

opment. Books on the subject are either focused on design or development,

sometimes giving the other field a few brief pages. Game design has been

given far more attention than game development and with good reason;

while designing games is a matter of looking at what has been done in games

before and how this can be done in new and interesting ways, game devel-

opment is something else, something far more businesslike. It involves the

financial side of things where investors and the publisher want to have a say,

and there is little room for artistic creativity here. But let us start by taking a

closer look at the d ifferent views on game design.

4.2.2 Game Design

Ernest Adams and Andrew Rollings (2003, p . 4) describe game design as the

process of imagining a game; defining the way it works, describing the ele-

ments that make up the game, and transmitting that information to the team

that will build the game. While being rather general, it does offer some in-

March 2007 Chapter 4 - Game development from the outside

Page 25 of 212

sight into the relation between design and development. The game design is

the vision on which the game is built, and it describes the game in detail.

What the design does not do, is explain the underlying code structures, d e-

scribe how the team will go about build ing the game, rate features in order of

importance, or in any other way explain how the game is going to be built.

And while the designers d ictate how a game should work and what elements

it should contain, the actual building of the game is left for someone else. How

these builders do their job is entirely up to them, and is not something the

game designer writing the design usually worries about.

This way of dealing with a design phase is d ifferent from the way the design

process is done in trad itional software development. Here, the software d e-

signer writes flow charts to show the relation between objects and classes,

while the game designer writes charts to describe the interaction between

characters, units, and other actors in the game world . These two things looks

the same on the surface, but the comparison is only skin deep. Game design is

done on a higher level without focusing on the underlying code stru c-

tures. This can be seen in how theory on the field does not take the job of the

programmer into consideration, silently promoting a d ivision betw een design

and implementation. However, one of those who do consider this d istinction

a problem is Julian Gold (2004, p . 384), who suggests the addition of a tech-

nical designer to the design team. This designer would be the person who

turns the ideas expressed in the design document into the flow charts we see

in other software development structures.

Chapter 4 - Game development from the outside Playable Design

Page 26 of 212

4.2.3 Game Development

There are few sources of information on how to do a full game development,

and Cerny's Method
5
 (Cerny & John, 2002) is the closest there is to an actual

method for developing games. This method gives a macro view of the entire

production from idea to finished product, and tries to deal with some of the

common problems we see in game development today. After having identi-

fied what they see as myths in game development, they go on to present the

way they create games. The result is the following process:

Preproduction

 Document: Macro design

 3 Cs: Character, Camera and Control

 Visual style

 Completed key technology

 First playable

Production

1. Micro design

2. Play testing

Their method focuses on the preproduction phase of a game project, the goal

of which is to gather as much information about the project as possible. At

this stage the game design should be on a macro level, including only the

three Cs, the visual style, and complete key technology to be used in the

project.

5
 While developed by both Mark Cerny and Michael John, it is commonly referred to as

“Cerny‟s Method” or simply “The Method ”.

March 2007 Chapter 4 - Game development from the outside

Page 27 of 212

This way of doing a preproduction is all about taking chances early on, figur-

ing out what works while exploring the limits of the technology, and getting

concrete information as to how long elements like levels will take to build . At

the end of the preproduction phase the team will have a short but detailed

micro design document where all the relevant knowledge learned in the pr e-

production phase is documented . This document should include information

about the character and how it moves, exotic mechanics, level structure, level

size, level content, and overall structure of the game. This document is com-

plemented by the first playable. The first play-

able is similar to a “vertical slice”; a large pro-

totype showing all the key features in the

game compressed into one to two fully play-

able levels of publishable quality.

Aside from Cerny, writers focus most of their

time on game design without describing a

full production. On Game Design (Rollings &

Adams, 2003) and Game Design Workshop -

Designing, Prototype and Playtesting Games

(Fullerton, Swain, & Hoffman, 2004) are exam-

ples of books in which game design is the only

focus. In addition to Cerny, Tim Ryan (1999) touches on how to do the actual

implementation. In his article, he focuses on how to make the design phase

more structured , but this is only a small piece of the entire production.

4.3 Software Development

The most obvious place to start when trying to find a methodology suitable

for game development is the field of software development. While the end

Figure 5: A vertical slice of a entire

game.

Chapter 4 - Game development from the outside Playable Design

Page 28 of 212

user experience is not the same in games as in trad itional software, the work

environment in which the products are created can be said to be the

same. Both are built by people with the same skills, using the same tools and

programming languages. A game has more focus on the visual and auditory

elements, but as soon as you strip away the artistic side of things, game de-

velopment can easily be compared to software development. While game d e-

velopment can be said to be software development with an added element of

creativity, it is software development nonetheless.

The fact that software engineering focuses on functionality and usabili-

ty while caring little for the fun aspect of the end product, has to be taken into

consideration. What these methods do is that they simply help the project

manager manage the team's time and available resources in order to create

the best possible product. Compared to the game industry, the software d e-

velopers have had more time to refine the methods in which to accomplish

this. With little documentation of the current methods being used in game

development, looking to software development is a natural next step.

4.3.1 The Waterfall Method

Traditional software development often used the Waterfall method originally

proposed by Winston Royce in his article “Managing the Development of

Large Software Systems” (1970). Ironically, the method Royce proposes is not

as rigid as it later became known as. He actually recommends doing some of

the steps twice;

If the computer program in question is being developed for the first time,
arrange matters so that the version finally delivered to the customer for
operational deployment is actually the second version insofar critical de-
sign/operations areas are concerned (Royce, 1970, p. 334).

March 2007 Chapter 4 - Game development from the outside

Page 29 of 212

Unfortunately, his method was adapted in the software development indu s-

try as a single-pass method, where once one phase was completed iterating

back was unheard of. Nevertheless, even though Royce suggested to “do it

twice” the waterfall method fails to address the high-risk elements of devel-

opment in a constructive way. High-risk areas such as implementation and

usability is pushed until the end of the development cycle, leave the impact

and cost of changes much higher.

Even so, the version of the waterfall method described by McConnell (1996, p .

136) is one of the best known development methods in the software world . It

is a lifecycle model, which means that a project following this method goes

through a set of predefined phases described by the method. Each phase ends

with a review which purpose is to see if the project is ready to progress to the

next phase. In the waterfall method a project starts off with an initial concept,

followed by a detailed requirement analysis identifying exactly what the

software should be able to do. Then follows the system and software design

phase, where the overall architectural design of the code structures is

done. Once the design is in place, the actual programming begins. This means

that all the design is done up front, before any of the actual implementation

starts.

Chapter 4 - Game development from the outside Playable Design

Page 30 of 212

Figure 6: The waterfall method

This way of seeing a software production fits very well with game design

theory and the idea that a game project starts off with the game design-

er writing a detailed design document before anything else happens. The d if-

ferent phases do not overlap, and going back to a previous phase is possible

but according to McConnell it is not recommended. The method takes as a

premise that the initial design is the right one; going back due to a flaw

means retrofitting the fix into your old design while putting the rest of the

project on hold . This is because the design and requirement analysis are done

right at the start of the project, and herein lies the problem with the method.

It only works if you know exactly what you are build ing and are familiar with

the technology you plan on using when build ing it. If this is the case the me-

thod brings order and structure to the project, and the lack of flexibility will

not be an issue because you know what you are build ing and how. However,

this is not the case for most software productions and never for large scale

game projects. With most of these products, the end user can have a hard

March 2007 Chapter 4 - Game development from the outside

Page 31 of 212

time specifying exactly what he or she wants until the final product is ready

to be tested . In this situation, a more flexible method needs to be considered ,

one which allows for continuous design and user feedback throughout the

span of the project.

4.3.2 Spiral Development

Another trad itional software engineering method is spiral development. This

method incorporates risk management as a driving force throughout the

project. As described by Sommerville (2001, p . 53) the development process is

represented as a spiral, with each loop in the spiral representing a phase in

the project. Each loop is split into four sectors:

Objective setting A detailed plan is described containing the objectives for the

phase along with constraints on the project, the risk involved

in the phase and possible alternative strategies based on

those risks.

Risk assessment and

reduction

An analysis is made on the base of the risks identified in the

first sector, and steps are taken in order to reduce these risks.

Development and

validation

Depending on the risk analysis, a development model is ch o-

sen that best deals with the kind of risk the project is curren t-

ly facing.

Planning The loop is reviewed, and plans are drawn up for a new loop

if needed.

Chapter 4 - Game development from the outside Playable Design

Page 32 of 212

Figure 7: Model of the spiral development method. The project starts in the center of the spiral .

By being able to incorporate almost any development method, spiral devel-

opment is more of a meta-method when compared to other methods. Since,

because in each spiral a d ifferent method has to be chosen based on the risks

that spiral represents, a thorough understanding of other methods‟ strengths

and weaknesses is a prerequisite for using it. It also requires a team that is

willing and able to switch work methods several times throughout a project.

March 2007 Chapter 4 - Game development from the outside

Page 33 of 212

4.3.3 Agile methods

Iterative development methods tackle high-risk areas much earlier in the de-

velopment (Larman, 2004, p . 58). While spiral development comes close to

being iterative in the way it bridges all the d ifferent trad itional methods to-

gether, there is a movement in software development that takes it one step

further. The iterative methods do not eliminate the risk, but they do try to

cope with it in a more meaningful way by addressing it head -on earlier than

most of the trad itional methods.

The agile and iterative methods are an attempt to handle the sudden changes

and unexpected problems software productions often face in a more adaptive

way. The best known agile method is Extreme Programming (Beck & Andres

2005).

4.3.4 Extreme Programming

First published in 1999 and then revised in 2005, Kent Beck‟s book about Ex-

treme Programming (XP) received a lot of publicity in software circles when

it first came. It is tag lined "embrace change", and with good reason. What

Beck tries to do with XP is to reduce the cost of change by designing and d e-

veloping the software at the same time by continuously expanding the prod-

uct through iterations. But more than that, he tries to bring some humanity

back into software development and show that productivity does not equal

burning out people through overtime.

XP is built around five values, and based on these values Beck draws a set of

principles and practices. The practices are the realization of values, and the

principles work as a bridge tying the two together. The five values are com-

munication, simplicity, feedback, courage and respect. Communication because

only through proper communications will a team be able to draw on each

Chapter 4 - Game development from the outside Playable Design

Page 34 of 212

other‟s strengths and avoid doing the same thing twice. Simplicity because

you should always ask yourself “what is the simplest thing that could possi-

bly work?” (Beck & Andres, 2005, p . 18). Get feedback in order to spot mis-

takes and adapt to rapid change. In addition, you also need courage to throw

away things that do not work, and the courage to tell your co-workers your

opinion. Overarching all these values is respect for the rest of the team, as

people and as professionals.

 While the values are guidelines for how members of the team should relate

to their fellow team mates as well as the project as a whole, the principles are

an understanding of these values on a more practical level. They lie som e-

where between ideology and actual practices, not as abstract as the values yet

not as tangible as the principles. Beck lists 14 principles for XP
6
, and together

they form the framework for the practices.

Based on this, Beck suggests a range of d ifferent concrete practices to be used

throughout the project. Practices are day to day activities of the XP team. The

core practice in XP is short iterations with weekly releases and continuous d e-

sign paired with feedback from co-workers and customers. Through this,

sudden changes in requirements will be less of a problem be-

cause the developers do not suffer from bad plans made in the beginning of

the project. Beck also promotes the idea of a customer as a permanent mem-

ber of the team, providing constant feedback on the product being developed.

By adapting to change and planning for change, the situation of the p ro-

grammer becomes more stable and less stressful than if change were sudden-

ly placed upon him with no prior warning or mechanisms for dealing with

them.

6
 The 14 princip les are humanity, economics, mutual benefit, self-similarity, improvement, diversity,

reflection, flow, opportunity, redundancy, failure, quality, baby steps, and accepted responsibility.

March 2007 Chapter 4 - Game development from the outside

Page 35 of 212

4.4 Fun factor

When comparing game development with software development, it is impor-

tant to keep in mind the d ifference between games and trad itional software.

Software is designed to be functional, and is judged based solely on how well

it solves the problem at hand. Can the word processor do a good job of set-

ting up a document? Does the image editor produce good images? What we

want from our software depends on what kind of software it is, and we want

d ifferent things from our internet chat clients then we want from our music

ed itors. With games on the other hand, the user demand is easy; they want to

be entertained . This leads us into an entirely d ifferent setting, and instead of

asking if the program does what it is suppose to do, the question is simply if

it is fun. But it is not that simple. Games have expectations as well. A horror

game is expected to p rovide a certain experience, which is completely d iffer-

ent from a sports game. Just like nobody opens Word to look at their pictures

or Photoshop to write a document, players do not start up Doom III for a good

laugh or The Sims for fast-paced action.

The d ifference, however, is the approach taken by the user. Traditional soft-

ware are designed as tools, games are designed as entertainment. What kind

of tool you need determine what program you use, and what kind of enter-

tainment you want determine what games you play. Software has to solve the

problem it is designed to solve, but this can be tested purely on a technical

level. As far as software development is concerned , there is no need to in-

clude the user before the usability test. With games the same two elements

apply, and while the usability issues are much the same, the “problem” a

game is set to solve is much more complex. Games are trying to entertain

through an element of fun, and fun is a much more subjective thing then the

value of a tool. While it is possible to come close to an objective evaluation of

the value of a d igital music player and a word processor, it is hard to narrow

Chapter 4 - Game development from the outside Playable Design

Page 36 of 212

down the element of fun in a similar matter. Fun is all-important when it

comes to the success of a game, and while there is much to be learned from

software development, this should not be forgotten.

March 2007 Chapter 5 - Game Development from the inside

Page 37 of 212

5 Game Development from the inside

In the last chapter we had a look at d ifferent views on game design and game

development, and compared the two terms in the light of theory. We also had

a look at software development theory from the trad itional waterfall method

to the agile methods represented by XP. In this chapter we will take a closer

look at how these development methods relate to game development, and

compare the two in the light of the problems they are meant to solve and the

results they are intended to produce. In doing this we will also briefly touch

on the d iscussion around documentation which currently exists in both game

and software development. The chapter concludes with an analysis of the

game industry through findings from the post mortem articles from Gamasu-

tra.com and Game Developer magazine.

5.1 Big Design Up Front

The waterfall method promotes the idea that designing everything before you

start implementing anything is a good way to develop software. And in some

cases it is. The software industry d id it for years, and looking at the current

d iscussion on how to write a game design d ocument it seems as if the game

industry is doing it as well. In the previous chapter we looked at methods

originating from the waterfall and the agile way of thinking, and now it is

time to compare the two in the light of game development.

Chapter 5 - Game Development from the inside Playable Design

Page 38 of 212

5.1.1 Waterfall versus Agile

Say you are making a Flash game
7
 for a website. It is an adaptation of classic

poker, complete with the network code that will allow several people to play

against each other. The framework for the poker game is already in place and

a website portraying a classical casino has been up and running for some

time. The team creating the poker game has already created both blackjack

and baccarat using the same tools, and has a good understanding of how to

go about implementing a new game.

This is close to the perfect scenario for applying the waterfall method. The d e-

signer knows exactly what the game is about; poker is a known game and in a

casino setting variations from the original rules will not be tolerated . The

team making the game has experience from making similar games in the past,

and they know from previous experience the possibilities and restrictions of

the tools they will be using. Designing everything before bringing in the pr o-

grammers creates few problems in this scenario, and would be the preferred

way of doing it. While a setup like this is possible in other sections of the

game industry besides casual games, it is a rare occurrence and most likely

tied to an expansion pack of, or a sequel to an existing game.

In all these cases the designers know what they want to give the player and

the players know what they want. In the first scenario, the players want to

play poker online. How it is wrapped and sold is in the hands of someone

else then the development team working on the implementation, and wheth-

er or not the players enjoy playing poker is something the designers do not

have to worry about. The same goes for the sequel and the expansion pack;

with the tools in place and the end user defined , a company can always

7
 A game made using Ad obe Flash is commonly referred to as a “Flash game”. Ad obe Flash is

a tool for making browser based applications, and is a favorite among many developers of

casual games.

March 2007 Chapter 5 - Game Development from the inside

Page 39 of 212

choose to play it safe and release a new product offering more of the same

with few new additions.

However, most game productions are not like these. Designers want to bring

something new to the table; the unique selling point (USP
8
) which d istinguishes

their game from their competitor‟s and impresses the investors. There is also

a good chance that the game relies on technology the programmers are not

familiar with. Even a genre which has been tried and tested by others can be a

substantial challenge. Implementing car hand ling in games is still hard to do

right even if people have been doing it for years, and the number of technical-

ly poor first-person shooters we have seen suggests that even that genre can

offer some serious challenges. Chances are, though, that a game designer

wants new and compelling features which also include unfamiliar technical

solutions.

Whether it is the design or the implementation that ends up causing prob-

lems does not matter, either one makes designing everything up front a risky

proposition. As far as software development goes, Clements and Parnas

(2004) list the following problems with doing up front design in trad itional

software development:

 The clients or users are not sure what they want.

 They have d ifficulty stating all they want and know.

 Many details of what they want will only be revealed during devel-

opment.

 The details are overwhelmingly complex for people.

 As they see the product develop, they change their mind.

8
 The simple fact that this is a coined term in game development circles ind icates how much

emphasis is put on this. The d ictionary at GameDev.net defines USP as “ Unique Selling Points.

Normally what will be put on the back of a box or an advertisement showing how a game is different

and better than its competitors and predecessors”.

Chapter 5 - Game Development from the inside Playable Design

Page 40 of 212

 External forces (such as competitor‟s product or service) lead to

changes or enhancements in requests. (Clements & Parnas, in Larman, 2004, p. 5)

Looking at this list, it becomes clear that the problems software development

have been facing for decades are very similar the gaming industry‟s cu rrent

problems. The players do not really know what they want; they know a good

game when they play it. The details of exactly what they want only become

apparent to the developers during testing. This also ties back to Cerny‟s d is-

missal of the focus group as only being able to tell you “what not to do”

(Cerny & John, 2002), turning the idea of the focus group up-side-down. The

game designers on the other hand have a problem with explaining the game

design perfectly the first time, and ends up changing the design as they see

the game develop. And finally, other games coming on the marked during

development can end up having a major impact on a game being developed

which is suddenly found to be lacking what every gamer now takes for

granted . The lesson to take from this is that game develop ment and software

development are not as d ifferent as game developers often wish to see them.

Both industries are fighting many of the same issues, whether they are mak-

ing games or security systems. The game industry has a lot to learn from

software development when it comes to development methods. Another

problem area which is shared by both camps, is one concerning the role of

documentation.

5.1.2 The Design Document

The d iscussion around waterfall and agile methods leaves the idea of the ex-

tensive game design document with some problems. Tim Ryan (1999) and

many with him, have advocated the idea of the detailed 100-300 pages design

March 2007 Chapter 5 - Game Development from the inside

Page 41 of 212

document as the best way to go about designing a game. Rollings & Adams

(2003) also include a section about how to go about writing your game design

document, listing Chris Tailor‟s
9
 template as a possible starting point.

There are many good reasons for starting a project with a large game docu-

ment. First of all, it is cheap. A single person can produce a game document

single handedly without using more expensive tools then a stack of papers

and a pencil, and though the process of writing it he will be forced to consider

elements of his concept on a d ifferent level then when it was just an idea

floating around in his head . However, expecting this document to give an ac-

curate description of the entire game is expecting too much. Even a team of

people writing the document together will not make much d ifference unless

it is the equivalent of the casino poker game they are making. Still, a game

design document is something many publishers value (Rollings & Adams,

2003, p . 586), an important point which should not be forgotten. There is a lot

of politics in the game industry, and some of it is tied d irectly to the design

document.

While a large document does have its uses, the problems with th e waterfall

method suggest that a document like this should not be used as a bible for an

entire production. For that, developers are better off looking to what the agile

methods propose and make a document which follows the micro/ macro de-

sign mentality taken by Cerny & John (2002). Create a macro document of a

few pages containing just enough to get started , and then make the first pro-

totype. This fits well with Becks idea about Incremental Design (2005, p . 51),

suggesting that “the most effective time to design is in the light of expe-

rience”. Of course, he is talking about the design of a code base, but the d e-

9
 Chris Tailor is the designer behind Total Annihilation, Fallout: Tactics and Dungeon Siege. His

template for creating design documents can be found here:

www.designersnotebook.com/ ctaylordesign.zip .

Chapter 5 - Game Development from the inside Playable Design

Page 42 of 212

sign principle is the same as for Cerny. Design once you know what you should

be designing, and find a way to figure this out before you have invested a year

in the paper design. Cerny have advocated one way of doing this, and later in

this report we will present a d ifferent way.

5.1.3 Burnout

Another reason for looking at d ifferent development methods is the current

turnover rate in the industry. According to IGDA‟s
10
 Quality of Life white pa-

per from 2004, people in the game industry complain about crunch
11

and overtime, and the statistics say that 51,2% of the people asked do not see

themselves working anywhere in the game industry 10 years from now. “For

the industry as a whole, such a high turnover rate is nothing short of cata-

strophic, and it goes a long way towards explaining our d ifficulty in ensuring

that our projects run smoothly” (IGDA, 2004, p 17.). It is clear that something

has to be done, and if the agile and iterative way of thinking helped software

development out of their problems, it might just be that it can help game d e-

velopment out of theirs. An example of development practices can be found

in the informal article EA: The Human Story
12
, in which the spouse of an EA

employee tells the story of an EA development team. This article describes

the inhuman work conditions for a development team at EA Games, and

created a storm in online circles from people in similar situations. In the a f-

termath of this the software engineers won a $14.9 million settlement from

10

 IGDA is an organization for game developers worldwide, formed to promote and stren g-

then the game ind ustry as well as improve communication between professionals. For more

information see www.igd a.org.

11
 Working day and night to meet a dead line.

12
 An article written by the spouse of an EA Games employee, creating a strong focus on the

work conditions in the ind ustry. The original article can be found here: http:/ / ea-

spouse.livejournal.com/ 274.html.

March 2007 Chapter 5 - Game Development from the inside

Page 43 of 212

Electronic Arts, and the artists won a similar $15.6 million settlement
13
. This

goes to show that even if the number of people who want to get in to the

game industry may seem endless, you can only push the ones already work-

ing there so far before they revolt.

5.2 Post Mortems

While most companies like to keep their competition at arm‟s length, one way

of getting an insight into actual game development practices is through post

mortems. These articles provide us with a unique glance into the world of

game development through the eyes of the developers themselves, and even

though they might not be completely honest, the articles still gives us a good

indication of what the people in the industry list as good and bad practices.

Most of these articles also include numbers on production cost, team size and

development time, and in the last chapter this was used to outline some con-

crete facts about the industry. The following section is a quantitative ap-

proach to the post mortems, where we will look at what the industry thinks

about itself. A thorough study of these post mortems would need an entire

report, so we have chosen to focus on the most extreme cases.

5.2.1 Flexibility

Flexibility is a topic which is raised in many of the post mortems, and there

are several ways in which projects can be said to be flexible. One is in relation

to the toolset the developers use when making the game which ease the flow

of assets between the technical programmers, sound programmers, graphical

artists, and level designers. Another is flexibility when it comes to the design

13

 http:/ / www.gamasutra.com/ php -bin/ news_index.php?story=6747

Chapter 5 - Game Development from the inside Playable Design

Page 44 of 212

process as a whole. Many companies use their own engine when making their

games, and some companies like Valve and Epic even sell their engine to oth-

er companies and offer it for free use to mod communities
14
.

As far as tools go, some developers had flexible tools, others saw their project

suffer under the lack of flexibility and wished their tools w ere more flexible.

The developers of Tropico (2001) were very happy with their unit and build-

ing editor and call it “invaluable for balancing and tweaking” (Smith , 2001),

and the level designers on SWAT 3 (2000) say that the use of the flexible level

ed itor Worldcraft
15
 instead of 3D Studio Max saved them “a ton of time” (Sa-

lad ino, 1999). At the other end of the spectrum, Startopia (2001) needed to

have all its models, animations and objects coded manually in order for them

to work properly, leading to an excessive use of programmer resources while

leaving the graphical artists with little to do (Imlash , 2001). Diablo II (2000)

had much of the same problems, causing a lot of extra work and leaving

sound engineers “painstakingly creating .AVI
16
 movie versions of animations

in order to synch sounds with actions” instead of simply creating a tool for

them in the engine so that other than programmers could create content with-

in the game engine (Schaefer, 2000).

While lacking some technical tools, Diablo II is on the other hand a good ex-

ample of a game where the designers had a flexible approach to their design.

They never had an official design document, and only made a rough plan be-

fore they started experimenting with new ideas (Schaefer , 2000). Granted , the

game is a sequel to the original Diablo (1996) which was a huge success, but

this could just as easily have made them sit down and draw up everything

14

 The word “mod” comes from “modification”, and refers to a modification made to an exis t-

ing game. Games like Half-Life and Unreal Tournament have large communities of fans ded-

icated to creating mods.

15
 The level ed itor for Half-Life.

16
 Audio Video Interleave, a multimedia container format for windows.

March 2007 Chapter 5 - Game Development from the inside

Page 45 of 212

they wanted to improve before starting to build the game. Instead they d e-

signed the game continuously as the project progressed , and to great su c-

cess
17
. This is similar to the process used by Naughty Dog, the com pany be-

hind the Jak and Daxter and Crash Bandicoot series. Working closely with Mark

Cerny left its mark, and they are “making large-scale games and shipping

them on time” through an iterative and agile development method. By using

a “flexible, macro-level scheduling scheme” their schedule is more accurate,

and slips in the schedule can be handled on a case to case basis to help keep

the production on track (White, 2002).

However, as far as documentation goes there are mixed experiences. Having

a flexible design should not be confused with having too little design or no

design at all. Like Beck and Andres (2005) stress in their XP methodology; d e-

sign enough to get you started then keep on designing throughout the

project. Fallout: Tactics (2001) is an example of a game which suffered from

this lack of design. With no clear vision behind the game and not enough

work put into the pre-production, people outside of the design team ended

up doing a lot of the design work during implementation. The playable demo

which came out of that process “absolutely stunk”, as they put it, and only

with the help of their CEO did they manage to get the game back on track

(Oakden, 2001).

5.2.2 Documentation

Documentation seems to be a tricky business for many developers, and too

much is just as bad as too little. Big Mutha Truckers (2003) suffered from over

documentation, causing two major problems. First, the sheer size of the d e-

17

 Diablo II received a MetaScore (metacritic.com) of 88 and the reception from the players

where huge. Due to the well designed online part the game is still being played today, 6

years after the original release, and has a substantial fan base.

Chapter 5 - Game Development from the inside Playable Design

Page 46 of 212

sign document made it d ifficu lt extract information from it, and the fact that

all the relevant information about an element of the game often spread

throughout the entire document d id not make it any better. And second, the

fact that it was written as an in-house marketing tool for selling the concepts

meant that “instead of concentrating on the 'hows' and 'whys' of the game's

production, it was instead focused on the 'whos' and the 'wheres'” (Jobling,

2003). The developers behind Trespasser (1998) had the same problem, but in a

somewhat d ifferent form. Even after they went into production, the only

document describing the gameplay was “a prose-based walkthrough of what

the main character would do as she went through the game, and a short d e-

sign proposal listing the keys which would be used and some rough ideas of

what gameplay might actually be” (Wyckoff, 1999). While it is possible to en-

ter a production with a document like that as a starting point, it requires a

toolset like the one offered by the agile methods in order to pull it off.

The problem with many of the productions is that they start out with an ex-

tensive design document and expect it to cover every aspect of the game. It

rarely does. When the teams behind games like Fallout: Tactics, Command &

Conquer: Tiberian Sun (1999) and Big Mutha Trukers say their document were

lacking, it is a simple answer to a more complex problem. These problems are

identical to the problems software development have been facing, and simply

writing more will not solve this problem. In some cases less is more, as with

Cerny‟s minimalistic approach to documentation. And if we are to take a les-

son from the pitfalls of software development, more would be just more, giv-

ing little to the project other than the illusion of certainty. But no matter how

you look at it, some documentation is required , and the key to writing this

documentation seems to reside in the pre-production.

March 2007 Chapter 5 - Game Development from the inside

Page 47 of 212

5.2.3 Pre-production and the vision

Regardless of how a developer chooses to go about creating his game, the d e-

velopment process will always include a pre-production phase of some sort.

The goal of the pre-production is to create a plan for the production, be it a

strict or more open-ended schedule. While this plan is the overall goal of the

pre-production, there are several other elemen ts which also need to be consi-

dered . The most important of these, is the grand vision.

That came to be the major roadblock for the developers behind Soldier of For-

tune (2001). During early development the team changed from thinking they

were making a first person shooter to thinking it was a team -based tactical

shooter, and this lack of a vision made the game hard to sell to their publish-

er. A lot of work ended up being wasted , and in the end “the SoF team

learned the hard way that a day of preplanning saves a week of rework” (Bi-

essman & Johnson, 2000). The developers behind Tropico had somewhat of a

d ifferent problem. Having just finished making Railroad Tycoon II (1998), they

went from doing a sequel to developing a brand new idea from scratch. The

lack of a proper pre-production led to the people on the team having d ifferent

visions about what the game was supposed to be, and this became a growing

problem throughout the production as these d ifferences surfaced . Only

through a painful process d id they even manage to complete the game, and it

took its toll on the team. In the end , “working on Tropico stopped being a

passion and became just a job for many on the team, leading to low morale

and loss of productivity” (Smith , 2001).

It is a common problem in th is phase to fill the game document with features

without looking at the game as a whole. While this is understandable seeing

as the game is not yet made, it still proved to be a big problem for many d e-

velopers. As each designer proposes features based on h is understanding of

Chapter 5 - Game Development from the inside Playable Design

Page 48 of 212

what should be the core aspect of the game, it becomes harder to narrow

down the vision later on.

Dungeon Siege (2002) is an example of a game suffering under extreme ambi-

tion. The pre-production left the team with a long list of featu res they wanted

to implement, but the lack of a core concept made it hard to cut in the feature

list. In the end , they crunched for two years to get all the features in simply

because they d id not know what to do. “We didn't crunch to make up for lost

time, we crunched out of uncertainty“(Kijanka, 2002).

The team behind Thief (1998) also had the problem of filling their design with

features during pre-production. It had multiplayer modes, branching mission

structures, tools players could combine to create new tools, and more. How-

ever, as the production progressed they realized their scope was too wide,

and “these and other "cool ideas" were correctly d iscarded”. Instead they fo-

cused on the core aspect of the game; a linear, mission based , single player

game based around stealth. By dropping the multiplayer support and focu s-

ing on implementing player tools which worked within the interface of the

engine they were using, the team could keep a stronger focus on the stealth

part of the game (Leonard , 1999). The result was the start of the stealth genre

as we know it today.

Generally speaking, there seems to be a problem in the pre-production when

it comes to game projects. Even when people make an effort to keep their d e-

sign at a realistic level they end up either having to cut features or prolonging

their production, and the cost of doing so depends on whether or not the

team considered this during pre-production and planned their production

accordingly. Getting everyone in on the same vision is another big challenge,

and defining the core aspect of the game is also seen as very hard . Making

sure everyone on the team understands the vision and the core of the game

seems to be one of the many keys to success in game development. But even

March 2007 Chapter 5 - Game Development from the inside

Page 49 of 212

with that in place, there is still a question of whether or not the idea is a good

one in the first place.

5.2.4 New ideas

Another challenge in the pre-production phase is to figure out if your idea is

good. Regardless of the game company‟s relation to their publisher, getting a

bad project back on track or simply shutting it down early and before a lot of

money have been invested is in everyone‟s best interest. The Cerny method

shows one way of testing concepts early in the development, and his method

is being used by some productions, most notably Spider-Man 2 (2004) and Rat-

chet & Clank (2002). Regardless of the method used , the idea of having som e-

thing playable is valued by many developers.

The developers of Drakan 2 (2002) got to experience this the hard way. Due to

a lack of early gameplay testing, they “implemented systems and built whole

levels before the team realized that something was never going to work from

a gameplay standpoint” (Denman , 2000). Soldier of Fortune had this same

problem, and the lack of a playable prototype after a year of development left

their publisher “a little nervous”. This uneasiness where shared with the d e-

velopers, and caused major turmoil as they tried to narrow down exactly

what kind of game they were making (Biessman & Johnson, 2000). The actual

costs of these late d iscoveries are hard to measure, but wasted man hours,

frustration and de-motivation on the part of the development team are some

of the effects.

On the other hand, developers who d id get the time to experiment with their

ideas early and got something playable up and running were very satisfied

with the results. Maxis has long been doing rapid prototyping when they

start on a new game project, and on The Sims 2 (2004) they “used early proto-

Chapter 5 - Game Development from the inside Playable Design

Page 50 of 212

types to resolve look and feel issues, to help understand the key emotional

connection, and most importantly, to test out the new gameplay concepts”.

These prototypes where made in the concept and pre-production phase, and

in addition to sparking creativity when defining the core aspect they were a l-

so a great help to both graphic artists and programmers throughout the pr o-

duction (Bradshaw, 2005). The design process of Ensemble Studios is som e-

what d ifferent. The design process they used when making Age of Mythology

(2002) was basically “to get the game p layable early and then tweak it until its

fun”. That way you can identify flawed ideas which sound good on paper but

do not work when you add players to the mix (Fischer & Street, 2003).

5.3 Lessons

Perhaps the biggest lesson to take away from these post mortems is be flexible.

And that works on every level. Those who d id not make flexible tools for

their animators and sound designers because they thought the project was

almost over, ended up regretting this later as things started to draw out. De-

signers who thought their paper designs w ere accurate were proved wrong

again and again, and the problems this caused were d irectly depend ent on

how early in the process these problems were d iscovered . Looking at all the

post mortems, there seems to be some general problems with the early phases

of the project. Those who do most of their design on paper and then proceed

d irectly to production are having several problems as the project progresses.

On the other hand, there are those teams who know how to do a good pre-

production; companies like Maxis and Naughty Dog which employs a ver-

sion of the agile methods to great success. It is no small coincidence that Will

Wright and Mark Cerny are sought after speakers in game development cir-

cles.

March 2007 Chapter 5 - Game Development from the inside

Page 51 of 212

For most companies these lessons are expensive. What does not break them

makes them stronger, and the process of writing a post mortem seem s to have

helped them make some realizations about how to do their next project. If

nothing else, the industry seems to be growing up, little by little, as the d iffer-

ent companies learn from their own mistakes. The problem though, is that the

d ifficulties in the industry have been the same over the last 10 years, and

worse, they are the same d ifficulties software development has been facing

for decades. While some companies are conscious of these issues, others are

not. With the gaming industry becoming more cut-throat as development

costs and the size of development teams increase, it is time for companies to

start learning from past mistakes instead of repeating them.

These post mortems only represent a small part of all the games which have

been released over the last few years, not counting all the canceled projects.

We can only speculate in the number of undocumented failures in the indu s-

try.

Chapter 6 - Case: Io Interactive Playable Design

Page 52 of 212

Facts on Io Interactive:

Founded: September 1998
Company background:

 Created as collaboration between
Nordisk Film & TV and Reto-Moto.

 Sold to Eidos Interactive Ltd in April,
2004.

 Eidos Interactive Ltd was in May
2005 acquired by SCi Entertainment
Group PLC.

Games Published:

 Hitman: Codename 47, November
2000 - 600.000 copies sold (PC)

 Hitman 2: Silent Assassin, October
2002 - 3 million copies sold (PC, PS2,
XBOX, Game Cube)

 Freedom Fighters, October 2003 - 1
million copies sold (PC, PS2, XBOX,
Game Cube)

 Hitman: Contracts, April 2004 - 1.6
million copies sold (PC, PS2, XBOX)

 Hitman: Blood Money, May 2006 -
(PC, PS2, XBOX, XBOX 360)

Employees: 170 + freelancers

6 Case: Io Interactive

In the following chapter we will take a look at the working procedures u sed

at Io Interactive when developing their games. The chapter will be based on

interviews conducted with key em-

ployees at Io Interactive. We have

interviewed both the producer be-

hind several of the Hitman games,

and game d irector on Io Interactive‟s

newest game. For the sake of ano-

nymity the persons interviewed

have been renamed and will respec-

tively be referred to as P1 and P2. E-

mail interviews were made both

with the technical producer on Hit-

man (P3) and Kane & Lynch (P4) and

furthermore with the lead of the

tools department
18
 (P5).

The interviews were structured in a non-rigid form and the questions asked

served merely as conversation topics. The participants interviewed by e-mail

were asked to answer a series of questions concerning their role and respon-

sibility in a development process, as well as how they would characterize the

development process at Io Interactive. The entire transcript of all the inter-

views can be found in Appendix A.

18

 The tools department hand les all in -house technology used to develop their games, e.g. en-

gine and ed itors.

March 2007 Chapter 6 - Case: Io Interactive

Page 53 of 212

6.1 Idea generation

Io Interactive is currently developing games on both a well-known franchise

and new concepts which requires a somewhat d ifferent approach with regard

to idea generation. Working with a known franchise, such as the Hitman se-

ries, binds the project by conventions and player expectations. The game

must preserve the uniqueness of the previous games if it is to attract the fans

again. Many of the developers working on the Hitman series have previously

worked on the other games in the series and by so know the universe and the

development process. P1 explained that the process of idea generation would

start with a small team. No more than 5 to 6 people would be assigned where

their job was to d iscuss how to improve and update the universe in regards to

the game. Furthermore, the purpose was to identify the d irection in which the

next game should be heading; is it “more of the same” or is new features

needed? P3 added that the assessment of features and content are mainly d e-

cided through a series of d iscussions by the designers involved . P1 explained

that a p itch document including descriptions of key features and visual style

is written and presented to the creative d irector and CEO of Io Interactive.

They, in turn, give their feedback to the concept whereafter the team adjusts

and extends the design. The reason why it is done in this matter is due to the

cheapness and easiness of changing d irection when all the material done only

existed in the form of a design document. At this point no real production has

commenced which makes it relatively easy to handle changes.

Another development approach was exemplified by a new relatively small

development team at Io Interactive. This team, headed by P2, is trying to

handle the game development process in a d ifferent way compared to the

Hitman project. The project is based on a new concept which gives more free-

dom to experiment and explore new ideas than the Hitman team. Instead of

taking the trad itional approach utilized by the Hitman production, this pro-

Chapter 6 - Case: Io Interactive Playable Design

Page 54 of 212

duction started with only two developers who used a lot of time to outline

the entire game and the basic setting. The normal process at Io Interactive is

to add a rather large number of people to the project once the first outline is

established . However, with the new project the opposite was tried where they

instead slowly added people to the production. The result is a project which

can easily be cancelled if it turns out to be a failure but also a project where

the developers have a clear idea of the vision of the game before going into an

actual production. P2 also explained that her role would be very d ifferent

depending on the type of process. A small team would let her focus on the

game while in big productions it would be to manage and d irect the team.

I'm trying to have a very helicopter view of the project and just give people
directions and try to be the director that we always wanted to have that
roll on the project. To give people feedback all the time, keep people moti-
vated. (P2)

P2 further explains how the intranet is used as an important tool to inform

people in and outside the team on the ideas, progress and d irection of the

project. Here is it also possible to write ideas and suggestions that can im-

prove the design, but in the end it is still the game designer that approves any

design changes.

6.2 Pre-Production

When entering the pre-production all important features and details are d e-

scribed in a design document by the Hitman team. This document includes

description on how the game is expected to work and how the story and le-

vels are structured . Furtherm ore, an important task for the producer in the

pre-production is to assign people to specific tasks and estimate how long

they will take to complete their task. At this stage the process resembles the

waterfall method described in the previous chapter where each phase is com-

March 2007 Chapter 6 - Case: Io Interactive

Page 55 of 212

p leted in closure whereafter the next phase is commenced. Since Hitman is

part of a franchise this approach can be useful to preserve consistence

through the games.

The new project at Io Interactive takes a very d ifferent approach to pre-

production than the one used by the Hitman team. P2 explains how they try to

make it a much more tangible process by implementing much of the content

in some form instead of writing it in a document. However, the design docu-

ment still works as a tool to communicate the idea. The pre-production team

is like with the Hitman team at relatively small team to begin with but is slow-

ly extended as the need for more man power increases.

6.3 Prototypes

Prototypes at Io Interactive are used in d ifferent situations and vary in scale

depending on the problems that they are trying to address. According to P3

the Hitman team uses prototypes primary developed in the game engine to

test uncertain elements. In this way it is possible to integrate the prototype

into the final game. P1 explains that the team is currently waiting for new

technology to be completed by the in -house tools department before they can

initiate the prototyping phase. This has forced them to think of d ifferent ap-

proaches than usually, e.g. to use the old engine or short animation sequences

to visualize new ideas. However, P1 explains that they have refrained them-

selves from doing this since it is regarded as being duplication of effort, since

this work could not be d irectly integrated into the final game and therefore

has to be recreated it in the final production. Instead , the Hitman team has

chosen to focus more on developing the story line and the setting for the

game.

Chapter 6 - Case: Io Interactive Playable Design

Page 56 of 212

P2 explains that they too develop prototypes d irectly in the game engine.

However, he is open to alternative solutions such as third -party engines. This

could be a good way to break the boundaries of the current technology and

focus more on the game experience instead , as P2 explains. Regretfully to P2,

the team is currently using in-house technology to develop their prototypes.

P2 explains the reason for this as:

[...] a resistances to that from some parts of the company and there's also
some resistance in general in using any tools outside the company for pro-
totyping because people believe – and maybe it's true – that if you proto-
type in something else then you throw it all away basically. (P2)

Nonetheless, P2 and the team are using prototyping as a tool in much greater

extend compared to the Hitman team. His prototypes are small and focused

on solving a specific problem. Partly because the project is new and in need of

a more explorative approach to investigate the gameplay elements; there is no

previous games developed by the company to retrieve knowledge from com-

pared to the Hitman games.

The information gained from this prototyping phase is used to update the d e-

sign document as the game evolves. P2 explains that the explorative process

of doing prototyping helps the entire team to understand the vision and at

the same time allow them to give their suggestion on how to improve or

change the game design. Furthermore, the prototype process is also the time

where all the elements in the game are explored in order to u ncover possible

risk areas early on, as this will benefit the production in the long run. P2 ex-

plains that the publishers too support such process since they too see things

in regards to risk – how much money are we gambling and how much can we

make?

March 2007 Chapter 6 - Case: Io Interactive

Page 57 of 212

The first and most obvious use of prototyping is to get knowledge about a

specific problem and thereafter how this knowledge can be used in a con-

structive way -”Maybe I'll revise my initial design based on observations.”

(P2). A side-effect of attaining new knowledge is a better understanding of

the risk involved . Risk management and risk exploration can help facilitate

the ideas in the game to a publisher and management.

Even though prototyping is used during both productions it varies in how

they prioritize it. Hitman seems to use the design document as the primary

source to gather and communicate information, while the new project is u s-

ing the prototypes as a foundation for the rest of the game.

6.4 Conclusion

The main result of the interviews is the fact that Io Interactive does not use a

single developing method. Instead , it seems to be depended on the type of

project – well-known concepts versus new concepts. The Hitman production

is based on the experience made through the previous games while the new

project requires a lot of experimentation in order to develop the content

needed.

Furthermore the Hitman team (represented by P1 and P3) use brainstorming

in teams to invent and improve new ideas which could fit into the franchise.

Prototypes are used , but are focused on technical d ifficu lt solutions, where

their purpose is to clarify how to incorporate a new technical feature. Small

prototypes could be helpful to explain and communicate the vision to the rest

of the team, and reduce the risks in general.

P2 use prototypes to explore the core features which are essential for the main

storyline. The game design evolves through a series of iteration with proto-

Chapter 6 - Case: Io Interactive Playable Design

Page 58 of 212

types. These are used as a design tool along with a design document to find

and understand the details of the game. The prototypes were also used to

communicate the vision to the entire team and to d isplay the progress of the

production to the rest of the company.

A change in the mindset of Io Interactive can also be seen through the inter-

views. The previous games have all been developed by means of big produ c-

tions with many people working on the same game. Currently, with the new

project, they are trying to go in the opposite direction by allowing a small

team of developers to explore new concepts in a relatively long pre-

production. The result is a production where every member is an active part

of the design process and helps to create the content. This is harder for the

bigger Hitman production, since it is not feasible to have 70-80 people chang-

ing and adding in the design. Instead of the members being an active part of

the design process a company meeting is scheduled by the lead -developers

where every employee has a chance to comment on the ideas. The two ap-

proaches creates very d ifferent developments, where the Hitman team is able

to ensure that the new game is in the spirit of the franchise but at the same

time creates a top-down management which can overlook the potential ideas

from the employees. Furthermore, it can create problems if the management

cannot communicate the vision of the game to so many people. This can lead

to confusing among the team members if not handled correctly. In contrary,

having a small team makes it easy to communicate the idea to everyone but at

the same time creates a flood of information since each team member have an

opinion in regards to the game. Both approaches have pros and cons which

have to be weighted in relation to the type of game developed.

An interesting point which we d iscovered during the interviews was the lack

of process evaluation. Mistakes, such as long crunch periods, exceeded dead-

lines and too large development teams where all issues which had created

March 2007 Chapter 6 - Case: Io Interactive

Page 59 of 212

exhausting developments but nonetheless a thorough evaluation of the

process had never been done. According to P1 the reason for this was that

everyone on the projects knew why these mistakes had occurred . However, it

was further explained that many of the same mistakes happened, or at least

could happen, in future productions. This lack of evaluation might be one of

the most important reasons why each production at Io Interactive is handled

in d ifferent ways. A structured way of evaluating a process can prevent many

of the same mistakes happening again and could furthermore help the com-

pany to find a more uniform way of developing their games. To ignore the

benefits of process reflection will create a development environment where

people have to start all over again when initiating a new process. To hand

down the experience from previous developments is the key to form a solid

foundation for new projects.

Chapter 7 - Adaptive Game Design Playable Design

Page 60 of 212

7 Adaptive Game Design

The hardest single part of building a software system is deciding precisely

what to build. No other part of the conceptual work is as difficult as establish-

ing the detailed technical requirements, including all the interfaces to people,

to machines, and to other software systems. No other part of the work so crip-

ples the resulting system if done wrong. No other part is more difficult to rec-

tify later.

Therefore the most important function that software builders do for their

clients is the iterative extraction and refinement of the product requirements.

For the truth is, the clients do not know what they want. They usually do not

know what questions must be answered, and they almost never have thought

of the problem in the detail that must be specified. Even the simple answer—

"Make the new software system work like our old manual information-

processing system"— is in fact too simple.

Clients never want exactly that. Complex software systems are, moreover,

things that act, that move, that work. The dynamics of that action are hard to

imagine. So in planning any software activity, it is necessary to allow for an

extensive iteration between the client and the designer as part of the system

definition.

I would go a step further and assert that it is really impossible for clients, even

those working with software engineers, to specify completely, precisely, and

correctly the exact requirements of a modern software product before having

built and tried some versions of the product they are specifying.

Therefore one of the most promising of the current technological efforts, and

one which attacks the essence, not the accidents, of the software problem, is the

development of approaches and tools for rapid prototyping of systems as part

of the iterative specification of requirements (Brooks, 1975, p. 199-200).

7.1 Designing versus making

30 years later, this is exactly what the game industry is still struggling with.

Unsure what to design or how to approach it this paramount phase of game

development is often done in a rather haphazard fashion. It is often ap-

proached the same way as construction a build ing is; by adding one element

at a time and slowly making the design larger and larger. But as Glenn Ba l-

lard states it “This is the ancient d istinction between thinking and action,

March 2007 Chapter 7 - Adaptive Game Design

Page 61 of 212

p lanning and doing. One operates in the world of thought; the other in the

martial world” (2000). Ballard continues to compare the two; one area being

making the recipe and the other area concerns making the course based on the

recipe.

Designing Making

Produces the recipe Prepares the meal

Quality is realization of purpose Quality in conformance to require-

ments

Variability of outcome is desirable Variability of outcome is not desirable

Iteration can generate value Iteration generates waste

Table 1: The difference between designing and making (Ballard, 2000).

The problem with the sequential approach, the “making” approach, is that it

leaves little room for iteration and experimentation with the design. In full

production this is less of a problem since you often have (or at least should

have) a good indication of where you are going. But in the design phase the

sequential approach is an unusable solution, due to the fact that when ga-

meplay ideas are implemented in a playable form it rarely results in a system

just as you imagined . Hence adjustments have to be made both on previous

implemented elements and future ones. Doing this sequentially is a huge and

cumbersome undertaking. Furthermore the fact that cost of development is

steadily increasing makes risk-taking less desirable and both publisher and

developer tries to create games that they are sure will recoup their high in-

vestment. This coupled with high ambition often lead developers down the

tried-and-tested path of sequential development. The high ambition can be

seen in the large design documents that often accompany the AAA titles
19
.

19

 AAA or triple-A titles are a common reference to high budget production that is released to

with much marketing on the worldwide market.

Chapter 7 - Adaptive Game Design Playable Design

Page 62 of 212

The development of the game Dungeon Siege almost collapsed under its own

ambition and lengthy development cycle. Although the developers state that

they were proud of their final game, the process of making it was not one

they willingly would go through again (Kijanka, 2002). Preparing food by fol-

lowing a recipe is very sequential; you cannot boil the pasta before putting

water in the pot. However, designing should and must break free of these

shackles of conformity to become truly interesting and unique. If not, the d e-

sign runs a high risk of becoming bland and indistinguishable.

In order to avoid or minimize risk the developers must seek out the risk in

areas where it is safe; in early experiments, in continuously maintaining

many options, and by being more adaptive in the approach to development

and design. The risk will still be present but in a much more controllable

form.

7.2 Playable design

Our focus have mainly been on pre-production, because it is in this phase that

game development d iffers the most from software development. It is in the

design of games that you can find the justification to place them in their own

realm in the overall landscape of software development.

Our method, as we have named The EVE Method (as in Experimentation, Vi-

sualization and Evaluation), builds on our strong belief that in order for the

gameplay design to become outstanding it has to be approached in a very

flexible and simple way. It has to be approached from many different angles and

the individual elements have to be experimented with extensively. It has to in-

corporate strong and frequent feedback loops and there must be a system in

place that can handle this feedback. It has to be lightweight and adaptive and

most important of all the design must be playable. By playable we mean that it

March 2007 Chapter 7 - Adaptive Game Design

Page 63 of 212

is one thing to design something on paper, it is a whole other thing to get the

feel and touch of the design by actually playing it. Prototyping h as long been

the hallmark of the experimental and explorative development processes and

we embrace it wholehearted ly, so much so that we wish to take it one step

beyond traditional prototyping and focus more on what only recently has

been referred to as lightweight prototyping
20
. With lightweight meaning simple,

small and flexible prototypes that can be developed and tested in a very short

timeframe.

7.3 Uncanny Valley

We feel that it is important to stress the lightweight part of this since game

developers and designer often run the risk of falling into what we call “The

Uncanny Valley of Prototyp-

ing”. Prototypes follows more

or less the same path as the

know theory of The Uncanny

Valley of visual art. The Un-

canny Valley term used for

describing the odd feel you

get when viewing humans

that does not look correctly.

20

 Cred it for coining the term Lightweight Prototyping (as least within game development) must

go to developers at game stud io Maxis, especially Chaim Gingold and Chris Hecker, who

often refer to their approach to developing the upcoming game Spore as doing lightweight

prototyping. They have, together with Maxis founder Will Wright, given numerous talks and

lectures on the development of Spore most noticeably on the Game Developers Conference

(GDC) in 2005 and 2006.

Figure 8: The Beatles in Madame Tussauds Wax Museum

in London.

Chapter 7 - Adaptive Game Design Playable Design

Page 64 of 212

The term was first used by robotics engineer Masahiro Mori in 1970 in his ar-

ticle by the same name
21
. The figures in Madame Tussauds Wax Museum are

a good example of human figures that fall into the Uncanny Valley. Because

the human figure and the appearance of fellow members of the human race

are so well-known to us only the slightest offset in visual appearan ce will be-

come notable.

Figure 9: The Uncanny Valley of Prototyping.

If the prototype looks like a finish game when first approached by a tester, it

becomes very hard to d istract from defects and lacking elements of the proto-

types. If the prototype is clearly conveyed to the player “as-is”, the person is

much more likely to look beyond shortcomings of the implementation and

look at what the prototype is really about. You must as a game developer be

aware of the large chasm that excites in the uncanny valley of prototyping. It

21

 See

http:/ / www.androidscience.com/ theuncannyvalley/ proceed ings2005/ uncannyvalley.html .

March 2007 Chapter 7 - Adaptive Game Design

Page 65 of 212

might take only a few hours or days to reach "the edge" of the valley, but

months to fully cross it.

This notion of the Uncanny Valley of Prototyping is certainly something we

experience during our own exp erimentations when we went about testing

our prototypes. If the tester were unfamiliar with the normal state of proto-

types they often had a really hard time giving valuable feedback. The feed-

back in these cases often consisted of “why is there no sound?” or “the menu

system looks very unfinished”. Feedback that was more or less useless since

the thing being tested was more in the nature of game mechanics.

7.3.1 The Space Pen

When NASA was commissioned by John F. Kennedy to go to the Moon in

1961 with the famous speech “We choose to go to the moon in this decade

and do the other things, not because they are easy, but because they are

hard”, they had little idea of hard it actually became. They were facing n u-

merous problems and one of them being that ord inary writing pens d id not

work in zero-gravity. The astronauts had to be able to write reports on their

progress during their missions in space and since computers still were not a

viable options for this pen and paper where the logical choice. However, the

problem was that NASA was then forced to invent a new type of pen that the

astronauts could use in zero-gravity. The regular ones on the market would

not function properly in space, since the ink had to “run out” of the pen. A

thing that was impossible without gravity. NASA then used years and mil-

lions of dollars to develop the famous Space Pen. And what d id the Russians

Chapter 7 - Adaptive Game Design Playable Design

Page 66 of 212

do? They brought a pencil. The result was the same but the Russian approach

was simple, effective and to the point. “The simplest answer is usually the

correct one”, as Occam‟s razor
22
 goes.

The story above is an urban legend and is, although untrue, an excellent ex-

ample of something extreme complex solved in the simplest way possible
23
.

The aim is to make the prototypes lightweight and simple. Make it so that it is

both easy to create and easy to understand . Complexity will always enter the

product at some point but in the initial design phase it is best kept simple.

7.4 Ready, fire, aim

The important thing about lightweight prototyping is not to crea te all-

encompassing game demos that will ultimately answer all questions about

the game design, but to create small quickly developed prototypes that an-

swer small portions. Large demos take long time to develop and often end up

becoming smaller scale productions in themselves. The aim is to quickly test

out ideas and either fail or succeed , but to do it fast.

The U.S. Marine Corps have what they call the 70 percent solution. They do not

encourage their sold iers to make fast, reckless actions, but they do explicitly

state that waiting for all angles to be figured out before venturing forward is

equally wrong (Freedman, 2000, p . 5-9). It might not be the perfect solution

22

 Occam‟s Razor princip le was put forward by the 14th -century English logician William of

Ockham. The principle states that when multip le competing theories are considered e qual in

almost all aspects, the theory that introduces the fewest assumptions and postulates the fe w-

est hypothetical entities is usually the best of most correct one. For more on Occam‟s Razor

see Wikiped ia.org (http:/ / en.wikiped ia.org/ wiki/ Occams_razor).

23
 The real story about the Space Pen is far less interesting than the myth which exp lains its

lower place in the historical hierarchy. The Space Pen was invented by a private company

with no funding or end orsement from NASA. Eventually NASA did indeed purchase 400

pens from the company at the price of $2.95 each. Read more about the Space Pen urban le-

gend on Wikiped ia.org (http:/ / en.wikiped ia.org/ wiki/ Pencil) and on Snopes.com

(http:/ / www.snopes.com/ business/ genius/ spacepen.asp).

March 2007 Chapter 7 - Adaptive Game Design

Page 67 of 212

that you come up with, but there is a very good chance that it is. If you use

your acquired knowledge and common sense, waiting for the last 30% of

your solution will not make it that much better. It is about just doing it, or as

legendary NHL player Wayne Gretzky once said “You miss 100% of the shots

you never take”.

If you fail often, you can quickly and effortlessly ad just to the feedback, and

get back on track with the design. Alternatively failing with a huge and very

elaborate design can have both enormous production and morale implica-

tions. Recovering from a six month development cycle of a prototype that

proved to be unplayable takes time and effort. Recovering from a one-day

development of a failed prototype takes just the blink of an eye.

7.5 EVE as a method supplement

The EVE method is a supplement which can be inserted or superimposed on

or into existing development methods already in use. The concepts presented

herein are meant as mindset changing tools that should raise the develop-

ment quality and consequently produce a better end product.

Figure 10: The EVE Method can be inserted in all production environments.

Chapter 7 - Adaptive Game Design Playable Design

Page 68 of 212

7.5.1 The experiments

The background for our method is a series of experiments we d id over a three

month period during our project. We wanted to get a feeling for what it was

like to work with new ideas, and how what kind of problems a developer

making prototypes in this manner would encounter. There is no substitute for

personal experience, so we tested the theory ourselves. The basic setup for

our experiments was as follows:

 One game mechanic developed in one week (5 days)

 A fixed theme (as in a word chosen at random, e.g. “Smash”, “Sticky”

or “Change”)

 Change group size: Four members per group, two members per group

and one-man groups

 Playtest often

We agreed early on that the game mechanic would be represented by a small

game, which should be fully playable at the end of the week. The idea was

that the game would rely purely on the mechanic, and should be able to illu-

strate the mechanic well. The process started off with randomly choosing a

word from a list of 40 keywords, and this was done every Friday afternoon so

the weekend could be used to find inspiration for game mechanics based on

the keyword . Monday started off with a brainstorm around the ideas pr o-

duced during the weekend, as well as the add ition of new ideas that came

from the brainstorming process. As soon as each group had narrowed it

down to one idea, they got to work on the prototype. Getting something

playable and testable up and running as soon as possible was the main prior i-

ty, and Tuesday, Wednesday and Thursday were spent working on the idea.

The deadline was Friday at noon, after which we evaluated the prototypes on

March 2007 Chapter 7 - Adaptive Game Design

Page 69 of 212

how they compared to the original idea. During these three months we had

four evaluation weeks in which we evaluated the process as a whole, and

made corrections to our way of working with the ideas.

When we started our experimentations we quickly found that while brain s-

torming sounds simple on paper, it is a very hard thing to do right. We tried

the d ifferent techniques described in chapter 8, and as the weeks passed we

got better and better at brainstorming. Some words were naturally harder to

work with then other words, and not everything sparked the imagination in

the same way. For this reason we ended up picking three words for the last

few weeks. At this point we were already starting to master the brainstor m-

ing process, and the change brought from lifting some of the initial limita-

tions showed that too many constraints that early can be a hindrance.

The actual prototype phase d id not see many changes. We often found that

the core mechanic of a game changed as we worked and tested the prototype,

and at the end of the week the initial idea had changed quite a bit. It shows

the classical issue with game and software development in a very small scale;

as you see the idea being developed your understanding of the idea changes.

Most of our prototypes where successful in the sense that they illustrated the

original mechanic to a level where it could be judged. But the real value in

came from the process of working with the idea. Once the week was over a

much more accurate description of the idea could be written. It was not nec-

essarily longer than the original description, but it had an undeniably aura of

certainty surrounding it. Possible implementation pitfalls were also detailed ,

and if applicable suggestions of tools a designer tweaking the mechanic later

would benefit from.

In the following chapters we present theories from diverse fields, such as

software engineering, innovation and testing. Theories that both underline

Chapter 7 - Adaptive Game Design Playable Design

Page 70 of 212

our method and could be used to solve some of the problems stated in the

previous chapters. The theory will be explained in greater detail and as these

theories often come from areas other than game development we have tried

our best to map and adjust the tools from these theories to fit the needs of

game development.

March 2007 Chapter 8 - Exploration

Page 71 of 212

8 Exploration

An idea that is developed and put into action is more important than an idea

that exists only as an idea. – Buddha

8.1 Introduction

How do you know if an idea is worth investing time and money into? The

right answer is probably that you do not, at least not 100%. The post mortem

analysis showed that even some experienced developers d id not always have

the ability to make these decisions, which consequently had a negative impact

on their games. During the course of this chapter we wish to explore the su b-

ject of creating ideas and give suggestions for tools which can help gather the

appropriate knowledge from which it is possible to make a weighted decision

regard ing these ideas. However, firstly we will look at creativity as a term in

the context of design – what is creativity and how do we control it?

8.2 Getting the great idea

Being creative on command is extremely hard and you risk en ding up pro-

ducing little if anything at all. Every single person has his or her way of

sparking the creative process; some are natural idea generators and produce

one idea after another, while other needs time to think about what and how

to do (Fullerton, et al. 2004, p . 9-10). Inspiration is often the key to creativity

and reveals itself in the most unexpected places and ways - a walk in the

woods, a memory from childhood, a billboard , etc. It is hard to pinpoint pr e-

cisely what creativity is and how it occurs, due to the nature of its ind ividual-

ity (Rollings & Adams, 2003, p . 29-31).

Chapter 8 - Exploration Playable Design

Page 72 of 212

We talk of innovation if creativity at some point results in a product which

brings economical growth. Innovation is often confused with creativity.

However, to optimize a creative process it is important to d istinguish be-

tween them. Innovation can be seen as the product of creativity, meaning

when initiating a creative process it might end up creating something innova-

tive. Furthermore the target group for each is somewhat d ifferent. To be crea-

tive is to make something unique for you, while being innovative is to create

something useful for a recipient, e.g. a company. This is, as mentioned , close-

ly connected to the fact that innovation is aimed towards economic growth,

while creativity is not necessarily so (Darsø, 2005, p . 158-159). But what does

this mean? In order to get "the great idea" game designers must initiate an ac-

tive creative process where they put their mind in a stage of awareness with-

out limitations in terms of e.g. profit (Gold , 2004, p . 13).

Thinking in terms of profit when exploring new ideas can act as a limitation.

Be creative but avoid the desire for innovation since you risk not exploring

sides of a problem which at first glimpse might seem boring. Furthermore

one has to acknowledge the fact that innovation in computer games has

reached a point where we seldom see true innovation. The reason for this is

like other field . New discoveries brings much attention given that it allows us

understand something we never understood before. But as time passes and

we learn more and more of the topic, the gap between innovation and u n-

iformity becomes smaller. For example, at the beginning of computer games it

was possible to invent whole new genres by making a game, whereas this

rarely happens now. We still see innovation in games, but in much smaller

scale - we refine features rather than inventing them. So the urge for innov a-

tion can be a strong incitement for doing games but it must not be the prim a-

ry reason since damaging the creative process might be the result instead .

March 2007 Chapter 8 - Exploration

Page 73 of 212

8.2.1 The process of creativity

To be creative can be explained as a d ivergent thinking process where de-

signers explore d ifferent solutions. At some point in the process the focus is

changed to convergent thinking where logic helps to narrow the idea down.

Löwgren and Stolterman (1998, p . 57) describe a design process as a trinity

consisting of a vision, an operable and a specification (see figure 11). Even

though the three parts is illustrated as a trinity wh ich affects the others the

process itself is sequential - a designer forms a vision that leads to an operable

plan which is followed by the specification. The vision is best described as the

initial idea and can take many forms. The operable plan is the first step to-

wards a clarification of the vision. It can be in the form of sketches, drawings,

metaphors, etc. It should function as the connection between the vision and

the design situation. The specification is the last step and acts as a presenta-

tion of details. The idea behind the model is that through iteration of the

operable plan and the specification designers develop the vision and by doing

so solve the problem area.

Figure 11: The design process (Löwgren & Stolterman, 1998).

Vision

SpecificationOperable plan

Chapter 8 - Exploration Playable Design

Page 74 of 212

Case study: Importance of a clear vision

The developers of Soldier of Fortune (2000) lacked a clear vision resulting in fundamental
changes of the game during the development:

“The single most damaging problem during SoF's early development was that the original
game lacked a truly focused design. We knew what the fundamentals of the game would
be, but we did not have the specifics that we needed to create a solid, cohesive product.
The game's overall story changed five times before it was finalized - at one point we had
even changed the basic game concept to a team-based tactical shooter, similar to Rainbow
Six” (Biessman & Johnson, 2000).

Another way to approach design is through the process of creativity, d e-

scribed by innovation expert Lotte Darsø where a person goes through five

sequential stages to formulate an idea (2005, p . 166):

1) First insight

2) Saturation

3) Incubation

4) Illumination

5) Verification

Even though this is more a mental activity it shares some similarities with the

model described by Löwgren and Stolterman. Both take the premise that be-

ing creative is an active process where the visualizer has to step into a certain

state of mind to produce ideas. Furthermore both suggest a sequential

process to obtain the knowledge needed to make d ecisions concerning the

value of an idea. However, the two models act on d ifferent abstraction levels.

The process suggested by Darsø does not give any concrete applicability but

is merely a generic way to approach creativity, whereas Löwgren and Sto l-

terman are d irectly aimed towards the creation of information technology.

Since Löwgren and Stolterman has a very concrete focus of their model it also

entails a specific behavior in form of operations and tools, and for this reason

we will use it simply as an example of how to structure such a process. We

March 2007 Chapter 8 - Exploration

Page 75 of 212

will during the last part of this chapter try to explain a game design phase

through the process of creativity, but extend it by giving a more tangible ap-

proach in regards to game development in form of tools, as Löwgren and

Stolterman does with their model. These tools should help to elaborate and

verify a game idea and by doing so help to explore and develop it further.

8.2.2 First insight

Ever wonder why leaves are green? Why we drive on the right side of the

road? Why gravity exists? Curiosity is the key element of the fist insight and

is the foundation for getting an idea (Darsø, 2005, p . 166). By asking ques-

tions, you observe the surroundings and by doing so you start to formulate

ideas of how to make things better or use them in another context. It is im-

possible to say what inspires people or when - it is very individual. The best

way to start the creative phase of idea making is to use d ifferent sources of

inspiration, whether or not it is a book, running a m arathon, or taking a nap.

The important part is to pay attention to the surroundings and how they af-

fect our thoughts (Fullerton, et al. 2004, p . 140).

As mentioned the great idea can appear out of nowhere so be prepared for it.

Bring a notepad , a PDA or something else where it is possible to quickly write

any idea down that might pop up unexpected . To organizing the ideas into

some sort of structure e.g. a database, will help recovering old ideas and at

the same time use it as a source of inspiration for future projects. By doing

this two things can be gained - firstly ideas which have been written down

tend to be easier to remember and secondly it is a chance to d ismiss all the

bad ideas, but do this with care, since bad ideas in one context can be brilliant

in another (Fullerton, et al. 2004, p . 140-142).

Chapter 8 - Exploration Playable Design

Page 76 of 212

8.2.3 Saturation

Logical thinking is the key element at this stage. The stage can be described as

a process of formulating and gathering data and information concerning the

problem – to broaden ones knowledge base (Darsø, 2005, p . 166). The idea of

knowledge gathering is a concept which has become an important focus area

for many companies. No organization can afford to depend solely on the abil-

ities of the individual - "Today the knowledge of one person is not enough"

(Darsø, 2005, p . 32). At one time it only took a single person to develop

a computer game, but nowadays the industry has become dependent on

group structures. This only enhances the process of creativity since the oppor-

tunity to find the knowledge needed within the organization itself has be-

come greater.

The hard task of the visualizer is to convey his idea to his co-workers so that

they can give him the information he seeks. It is not easy to communicate a

vision which only exists in one‟s head , and this all boils down to communica-

tion. Verbal communication is preferable here since we are still dealing with a

vague idea and only trying to gather information to support the curiosity.

This is also described by Craig Larman, who refers to The Agile Manifesto
24
:

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation (Larman, 2004, p.
28).

To describe the idea on paper is still too early and little will be gained com-

pared to the time lost doing it. However it can help to communicate an idea if

something is written down.

24

 Developed by the Agile Alliance with the purpose to support ind ividuals and organizations

that use agile approaches to develop software (www.agilealliance.org).

March 2007 Chapter 8 - Exploration

Page 77 of 212

A concept which worked well in our experiments was the use of keywords.

When you want to formulate the idea a bit more, try writing a few keywords

which describes the core feature(s). By doing so you help yourself to under-

stand it better and at the same time it gives a more tangible element which

can, along with an explanation, be enough for others to get a better under-

standing of the vision. Try limiting the keywords to the core of the idea in this

phase.

8.2.4 Incubation

The incubation stage equals time to reflect and cultivate an idea - mainly a

process of holistic thinking (Darsø, 2005, p . 166). The goal is to understand the

context in which the idea must function - the bigger picture. So far the process

of creativity has been somewhat informal and unstructured , however for the

incubation phase we suggest brainstorming as a tool to continue the creative

process, which has mainly taken place inside the head up until now. There

are many types of brainstorming, some requires more experience than others,

but generally they all encourage the process to change from an individual to a

group oriented process. The focus of a brainstorming session is to tap into

people‟s creative mind to create many ideas fast. Brainstorming has become a

relatively well known term and many see it as a tool which does not require

much from the participants. However, this could not be further from the

truth. Being in a brainstorming session requires a lot of focus and determina-

tion from the participants - it is not easy to be creative in a formal way.

Brainstorming is much like a hammer - anyone can use it, but for a rookie it

takes many tries to hammer the nail whereas an expert does it in one blow.

We need to exercise our brain into being creative on command (Fullerton, et

al., 2004, p . 142) and even then it can be hard to brainstorm since we rely on

other people to be creative too. A brainstorming phase can be described in

Chapter 8 - Exploration Playable Design

Page 78 of 212

Case study: Continuous idea generation

At Insomnia Games anyone can act as a game designer by sharing new ideas and though-
ts with the development team:

“Everyone in the company has always been free to contribute creatively to the projects.
It's not a requirement, but for those who are interested it's an opportunity to affect the
direction our games take. Programmers are encouraged to contribute to story, artists are
asked for ideas on design, and so on. During Ratchet & Clank, a large percentage of the
team contributed ideas outside of their particular areas of expertise, making the game one
of the deepest and most varied titles we've developed.
This does not imply that we design by consensus. There's a solid structure in place to en-
sure that we adhere to the macro design and remain consistent with the game's "flavor."
But adopting an approach that encourages design participation gives us a real wealth of
creativity from which to draw while enhancing the sense of ownership everyone feels in
our games” (Price, 2003).

three steps; to gather a group of people, to generate ideas without criticisms

or analysis and to systematize the result with the purpose of making it usable

for further developing (Löwgren & Stolterman, 1998, p . 111)
25
.

So the first thing to do is to gather a group of people to brainstorm with. For

practical reason it may seem natural to include people who are going to util-

ize the result in a game developing context meaning designers, producers,

artists etc. However, bringing other people along who can contribute with

other perspectives may also be a good idea. The size of the group may also

vary, but try to keep it no bigger than seven with three as a minimum, since

this is where the best result are achieved (Löwgren & Stolterman, 1998, p .

111).

Before starting the actual brainstorming phase it is important to set some

ground rules for the session. First of all put all negative thoughts and crit i-

cism aside - the purpose is to create ideas and not to analyze them. For now

all ideas are welcome. Secondly, it is important that no one holds back, every

little thought can be helpful and might be the piece that solves the puzzle.

Furthermore the purpose of the group is to inspire each other, so by using

25

 Our translation from of the original Swedish text.

March 2007 Chapter 8 - Exploration

Page 79 of 212

ideas made by others for improvements or whole new ideas is allowed and

should be embraced (Löwgren & Stolterman, 1998, p . 111).

When participating in a brainstorming session there are multiple ways to

spark the creative mind. There is no silver bullet which works for everyone,

so it is up to the individual or group to find the way which fits the best. A

technique which might help get started is a simple use of idea cards. Take a

bunch of small notes and write random ideas on each, put them in a bowl and

draw 2-4 random cards, whereafter ideas have to be created based on these

(Fullerton, et al., 2004, p . 143). We used this technique in our experiments as a

base for developing our ideas. We had around 40 idea cards which we used

to spark the brainstorming phase. Combinations like "Resistance", "Smash"

and "Collection" became the topic for one brainstorming session. Whether or

not the final idea ends up using these words is not the point – the point is to

kick-start the creative process. More experienced brainstormers might find it

more interesting to use the technique called Method 635 described by

Löwgren and Stolterman. The basis for this is to have six persons who are

well acquainted with the topic of the session, whereafter the task of each par-

ticipant is to write three basic ideas. Afterwards these are passed on to the

next participant who develops it further by adding three new ideas or mod-

ification. This is done until all ideas have been explored by all participants.

Take 6 participants, which make 3 ideas, in each of 5 rounds, hence 635

(Löwgren & Stolterman, 1998, p . 113).

At some point the brain cannot handle any more creative thinking and it is

time to stop - during our experiments we learned that our limit is around 30

minutes and if the sessions were to continue a break would be needed at this

point. Do not force people to go on, but instead try to structure the ideas al-

ready generated . Organize the ideas into categories - are any alike, do some

share similarities and so on. Do not skip or remove any ideas yet - this is the

Chapter 8 - Exploration Playable Design

Page 80 of 212

job of the next phase of creativity. At this point you can even start to organize

ideas into an early version of a design document. A collection of structured

ideas should be the result of the time spent with brainstorming (Löwgren &

Stolterman, 1998, p . 112). To save the work done is essential, since there might

be a nugget hidden somewhere.

Again it is important to stress that formal brainstorming is not easy and takes

much practice, so if the great idea occurred the first time, do it again. As the

brain is trained to think creatively it will become easier.

8.2.5 Illumination

The Aha-moment (Darsø, 2005, p . 166) defines when the illumination stage is

reached. It is described as a sudden strike of lighting which makes the solu-

tion appear clear. It tends to happen after a break from the idea process -

doing something else often helps to see the idea much brighter when retur n-

ing to it (Darsø, 2005, p . 166). Doing inspiring things might help to force this

moment to occur but at some point it might be more practical to take a d iffer-

ent approach. For example to continue in a more rational order by evaluating

the idea, find flaws and thereby improve it. Edward de Bono has suggested a

method – the Six Thinking Hats - to approach a d iscussion process with the

aim to optimize and utilize the intelligence, experience and information of

each participant (Bono, 2000). Our suggestion is to use this method as a tool

to reach the "Aha-moment" in a more formal and time economical fashion.

The idea behind the method is to separate a meeting in smaller phases where

participants address a topic from a d ifferent angle in each phase - they put on

d ifferent hats. There are 6 phases where each are represented by a colored

hat, hence the six thinking hat. Edward de Bono d escribes them as following:

March 2007 Chapter 8 - Exploration

Page 81 of 212

White hat White is neutral and objective. The white hat is concerned
with objective facts and figures

Red hat Red suggests anger (seeing red), rage and emotions. The red hat
gives the emotional view.

Black hat Black is somber and serious. The black hat is cautious and
careful. It points out the weakness in an idea.

Yellow hat Yellow is sunny and positive. The yellow hat is optimistic and
covers hope and positive thinking.

Green hat Green is grass, vegetation and abundant, fertile growth. The
green hat indicates creativity and new ideas.

Blue hat Blue is cool, and it is also the color of the sky, which is above
everything else. The blue hat is concerned with control, the organization
of the thinking process and the use of the other hats.

(Bono, 2000, p. 13-14)

Our suggestion is to use this method to illuminate an idea and evaluate it

from different angles. The method was intended to be used in groups but can

also be used as a tool by individuals - the important factor is that the problem

area is examined from different angles (Bono, 2000, p . 22). The idea is that

everyone present at the meeting puts on the same hat and addresses the topic

- it is important to notice that everyone has the same hat at any given m o-

ment. Do not grant d ifferent hats to each person, since the objective is to use

the d iversity of every person to solve the problems or develop the idea.

Since the description earlier is somewhat shallow we wish to clarify how each

hat works and the possible pitfalls concerning the hats.

The white hat is all about collecting information available among the partici-

pants. De Bono compares it to a computer - "We expect a computer to show

us the facts and figures on demand. We do not expect computer to argue with

us and to use its fact and figures only in support of its argument." (2000, p .

27). So when putting on the white hat you have to think rational, neutral and

without emotional and by doing so try to uncover as much information as

Chapter 8 - Exploration Playable Design

Page 82 of 212

possible. It is important that you do not engage in debates regard ing inform a-

tion. If some information contradicts others there is no point in arguing about

this - the information is just places parallel to each other, unless it is of such

importance that it needs to be solved immediately to continue the session

(Bono, 2000, p . 25).

The red hat is the opposite of the white - here it is about emotions, intuition

and feelings. They form the basis for values and help us understand the con-

text we are acting within, and by simply ignoring them you act against the

very nature of humans. Emotions are of course not always right, but still form

the basis for many decisions - we follow our intuition from time to time and

based upon this we learn how to act if a similar situation should occur. Ther e-

fore a participant must always comment on a situation or idea and should not

be allowed to pass, since it is a matter of personal belief and feelings - not

facts or knowledge.

Many see the black hat as the easiest one to use - black stands for caution and

help us to be careful with things that are illegal, dangerous, unprofitable, etc.

(Bono, 2000, p . 73). We have a trad ition in western cultures to think critical

and to argue about things which are contradictory and inconsistent. We live

by certain norms, values, ethics and policy and if someone is doing som e-

thing against these we put on the black hat in order to address this (Bono,

2000, p . 73). The arguments of the black hat is often confused with the red hat

and therefore it is important that you form the foundation of your arguments

in facts and by doing so put away all feelings towards the topic.

The yellow hat is about optimism; how can we make things happen? It is the

opposite of the black hat and may for many people be one of the harder hats

to wear. Humans have a natural mechanism which takes care of the black hat;

however we do not have this for the yellow hat (Bono, 2000, p .91). Using the

yellow hat can end up creating a huge value for the project since we have to

March 2007 Chapter 8 - Exploration

Page 83 of 212

look at things we would normally d ismiss before taking a closer look. This

however is what the purpose of the yellow hat is all about - seeing things that

are not normally obvious (Bono, 2000, p . 92).

The green hat focuses on creativity and how we develop ideas. When using

the green hat it becomes the job for every person present at the session to be

creative and not only the idea-person. If you do not have any thing creative to

add , you simply have to sit quiet in your chair and do nothing (Bono, 2000, p .

115). The green hat also lets you decide a course of action and to solve prob-

lems introduced under the black hat (Bono, 2000, p . 116). Creativity is the

purpose which hopefully should lead to improvements of some sort and

create a better foundation for the product.

The blue hat is concerned with the process of thinking - thinking about think-

ing. In this phase you decide the agenda for the session and how you wish to

explore it. Everyone is part of this phase to begin with, but as the hats change

for everyone else one person, the facilitator, remains in the blue hat phase and

d irects the rest during the other phases. His job is to ask for the outcome of a

phase, e.g. a conclusion, a solution, a decision (Bono, 2000, p . 147-148).

The method of the six thinking hats is a way to help explore a subject more

thorough and by doing so reaching the design phase with a clear idea of

where and what you are doing. At first glimpse the method might seem very

similar to the brainstorming methods mentioned earlier, but whereas these

tried to create ideas, the six hats method is about developing an idea into

something more tangible. You are being more than just creative - the method

expects the designer to look at the idea from more angles by breaking the

thinking process into small manageable sizes. Brainstorming is all about

quantity where the six thinking hats are about quality.

Chapter 8 - Exploration Playable Design

Page 84 of 212

During the course of our experiments we used the six thinking hats as a tool.

Early in the creative process we noticed that we d id not use much time ex-

ploring our ideas to the fullest. We experienced misunderstandings from time

to time, since people had d ifferent opinions and perceptions regard ing the

ideas which had to be taken into account. By using the hats we were able to

approach it in a more structured way were everyone had the chance and time

to comment and explain their thoughts without criticism and interruptions.

By using it we were able to create more elaborated ideas for game concepts.

8.2.6 Verification

Following the illumination phase it is time to translate the insight into a more

concrete solution in order to evaluate and verify it. Lotte Darsø explains it as

a phase where "the idea or solution is 'rationalized ' through processes of log-

ic" (2001, p . 166). We are concerned with creating games and since this is a

medium which is hard to verify without playing the game or parts of it, we

suggest a more tactile approach to test an idea, in the form of prototyping. It

is hard to test something which only exists as words, so by translating these

into a prototype the designer will be able to verify it and determine whether

or not it actually is fun.

The concept of prototyping is used throughout many industries and comp a-

nies as a mean of developing ideas, however this versatility have also created

many definition of what a prototype is (Hunt & Thomas, 1999, p . 53) . In

software engineering it is defined as a way of "[...] giving the user a system

which is incomplete and then modifying and augmenting it as the user r e-

quirements become clear." (Sommerville, 2001, p . 174). In game design, proto-

typing is "[...] to create a working version of a formal system that, while play-

able, includes only a rough approximation of the artwork, sound and fea-

March 2007 Chapter 8 - Exploration

Page 85 of 212

tures." (Fullerton, et al., 2004, p . 157). Both definitions talks of a system - an

assemblage or combination of things or parts forming a complex or unitary

whole
26
 – however we wish to break prototyping down to even smaller parts.

By focusing on a whole system it requires a lot of resources and implementa-

tion to reach a point where the idea can be verified . These system-prototypes

are useful but serve another purpose which is not important at th is point in

the process. Instead we will use the concept of lightweight prototypes. These

have the purpose of exploring a limited area of a game - more specific a game

mechanic- and should work as a simple and cheap way to quickly evaluate an

idea or parts of it. It is important to stress that these prototypes should not be

seen as a game, but merely a very small part of it. System -prototypes are first

playables, vertical slices, alpha versions, etc., while lightweight prototypes

are idea confirmation tests. A lightweight prototype could be a test to see

how a character should jump, a simple interface structure, a path finding a l-

gorithm, and so on. You do not need the whole game to test how a character

should jump – it is a matter of abstraction level. Seeing a simple dot jumping

from one platform to another will do just fine during this phase, in contrast of

waiting for models, sound, environments etc. to be done. Almost every part

of a game can be broken down to manageable pieces, which can be tested in

the form of a lightweight prototype. If 20 people and six months are needed

to complete a lightweight prototype the scope is too large. These prototypes

should quickly be done and take little resources to complete – it is a prototype

not a final game. What we want to achieve by making these prototypes is to

translate the insight into knowledge.

26

 Definition of 'system' found on www.dictionary.com

Chapter 8 - Exploration Playable Design

Page 86 of 212

Case study: Playable prototypes

By using prototyping when developing Deus Ex (2000) it was possible to test and play the
most crucial parts of the game quickly – even though it was hacked together it served as
an important way to understand the game better:

“One example of where our proto-mission idea was successful was in May 1998, when our
milestone was to have prototypes of critical game systems in place and two test maps
running, in this case the White House and part of Hong Kong. The maps were crude, the
conversations raw, and the game systems hacked, but we could see -- and show -- the
potential. To our advantage, we resisted the temptation to do just the stuff we knew
would work and the stuff that would look the prettiest, and prototyped new, risky stuff
first. Conversation, interface, inventory, skills, and augmentations were all at least hacked
in so we could see them in action. The White House was likely to prove our toughest map
challenge, so we built it first. (Almost unbelievably, I missed what may have been the
riskiest, most critical game system in all of our early prototyping, NPC AI. I should have
insisted on early prototyping of our AI but I didn't.) With the proto-mission system, we
could immediately see some of the limitations of our technology” (Spector, 2000).

An aspect which is important when doing lightweight prototyp es is the ac-

ceptance of failure. No one can get it right every time and as Woody Allen

once said “If you 're not failing every now and again, it's a sign you're not

doing anything very innovative”. However trivial it may sound, the impo r-

tant thing is to learn from the mistakes made. The fact that things go wrong

and that some ideas go from being fun when talking about them to being m i-

serable when implemented supports the idea of making small and cheap

lightweight prototypes. If a game idea ends up being scrapped you can take

comfort in the fact that developing costs were kept to a minimum. This could

have been fatal to realize 12 months into a multi-million dollar project. To ac-

cept failure is one thing, but we could even go as far as to say that failure

should be embraced . The fact that designers fail means that they are pushing

the limit to the maximum and probably crossing it too – this is the essence of

making lightweight prototypes; to test things which would require too much

time and money later on in the process. Earlier we talked about innovation

and how designers should not restrain themselves by thinking in terms of in-

novation. However, this is the chance to create something new. See the possi-

March 2007 Chapter 8 - Exploration

Page 87 of 212

bilities in prototyping and create as many solutions as imaginable. If we push

the creativity to the limit we might end up with something new and exciting.

8.2.7 Game mechanics

In relation to lightweight-prototypes we wish to specify what we mean by

game mechanics, but in order to do so we must first take a closer look at

games and its components. Andrew Rollings and Ernest Adams (Rollings &

Adams, 2004, p . 9) talks about games as a synergy between three parts:

 Core Mechanics

 Storytelling and Narrative

 Interactivity

Where each part, in interplay with the others create the experience a player

attains when playing. Core mechanics of a computer game can be compared

to the rules of a board game. They form the basis for the game and define the

operations available within the game world – the foundation of gameplay.

“Defining the core mechanics is the “science” part of game design” (Rollings

& Adams, 2004, p . 9) and if you are not able to do this you risk ending up

with a poor game. Furthermore, it is important not to d isguise technologies
27

as core mechanics since these should not be important to make the fund a-

mental of the game work. The problem with technologies is marketing. Some

games are based and marketed with technologies as USPs in order get the a t-

tention of the customer which again helps to sell the product. With a limited

budget and time frame the money available will often be spent on the parts

which sell the product the best (Rollings & Adams, 2004, p . 9-10).

27

 By technologies is meant elements which can be seen as a technological achievement in re-

lation to what there is currently available on the market, e.g. improved graphics, realistic AI

or authentic voice acting.

Chapter 8 - Exploration Playable Design

Page 88 of 212

Rollings and Adams separate storytelling from narratives in the sense that

every game has a story, but not all games have narratives. The story of a

game is created as the player plays the game – it emerges from the interaction

with the game. On the other side narratives, as they use the term, is when

part of the story is being told to the player by the designer. It can be com-

pared to the story of a book – you read a book but cannot interact with the

story or change the content (Rollings & Adams, 2004, p . 10-11).

The last component is interactivity and handles everything the player sees,

hears and acts within the game‟s world . Graphics, sounds, interfaces are all

examples of elements which is part of interactivity. “Poor interactive design

ruins many products” (Rollings & Adams, 2004, p . 12) – we probably all ex-

perienced a game where the interface or control scheme has been so badly d e-

signed and by so shattered the whole play experience even though the game

had some potential. Especially graphics has with the increase in computation

power become an even bigger part of game design. However it is important

to stress that a good looking game does not make up for badly designed m e-

chanics. The hard part is to weight the two against each other in matters of

time, manpower and money.

The definition presented by Rollings and Adams has certain qualities which

we want to adopt in relation to lightweight prototyping. The concept of core

mechanics fits our way of thinking in regards to verifying game ideas

through prototypes. We believe – as Rollings and Adams do – that these are

the essential part of a game design process and must be the main focus of the

design process. However we wish to extend the concept by removing ele-

ments such as controls and interfaces from the term interactivity and add it to

the core mechanics. We wish to d istinguish the essence of a game from the

wrapping. Graphics, sounds and story is wrapping – even though these can

be an important part of a game it is not the focus for the exploration of game

March 2007 Chapter 8 - Exploration

Page 89 of 212

ideas, and consequently our approach to lightweight prototyping. To write a

story or to make a character is not the job of a game designer. It requires some

other tools and is not important in the context of lightweight prototypes.

Figure 12: The tripartition of a game.

However since elements like interfaces and controls play a vital part in how

the core mechanics work, we have chosen to incorporate these along with

core mechanics into a common term called game mechanics. We have also

chosen to rename interactivity to art since the elements which make it interac-

tive have been removed and now only contain visuals and audios. Further-

more Rollings and Adams chose to d istinguish the term story from narratives

however this separation can create misunderstandings. The blend between

when the game is presenting a story and the player creates a story is not black

and white. For example when a player is presented with options in a cut

scene, does the story become a narrative or story? We see many shades of

grey in this separation and have therefore chosen to d iscard this term. We use

the term setting instead, which contains elements such as background story,

theme, universe, scenario, setting, etc. The important thing here is that we

have eliminated the player interaction with the game as a key component.

What we are trying to define is how a game designer can look at a game to

Game
mechanics

Setting

Art

Chapter 8 - Exploration Playable Design

Page 90 of 212

understand the parts he needs to design – we are not defining the concept

game. We also recognize that not every part of a game is explained by the d i-

visions themselves. However they can be explained as the sum of two or all

parts – e.g. a level can be explained by taking elements from game mechanics,

setting and art. Based on this we define the key components of a game with

regard to game development as a trinity of game mechanics, set ting and art.

8.3 From theory to practice

As mentioned earlier the creative thinking process is a description of how

humans generate and formulate ideas; however we have tried to use it more

concretely in the context of game development. The process is d ivid ed into 5

phases – (1) first insight, (2) saturation, (3) incubation, (4) illumination and (5)

verification. What we have tried to do is to introduce a set of tools which can

help to elaborate ideas; keywords for communicating, brainstorming for ge-

nerating, the six thinking hats for formalizing and prototyping for exploring

and validating of ideas. Even though the process may sound trivial it is har d-

er said than done. The tools introduced are all about “state of mind” and even

experienced creative people can lose their spark once in a while. During our

experiments it quickly became clear that this is something you need to prac-

tice on. Failure will occur many times at the start, but with practice the brain

will get used to thinking creatively whereafter the stream of ideas will hap-

pen more frequently.

March 2007 Chapter 9 - Feedback and communication

Page 91 of 212

9 Feedback and communication

Feedback is a tricky business, and the art of communication is not that easy to

master either. In this chapter we will take a look the values of feedback and

communication, and see how a team can implement feedback loops and the

rapid feedback into their productions. A feedback loop is when feedback is

used to generate new feedback through a process of continuous improv e-

ment, and it is the very essence of rapid feedback. We will also look at some

tools which can help communicating the feedback in useful ways.

On May 27, 1968, the US Navy submarine USS Scorpion went missing on a

routine mission in the North Atlantic while inbound for Norfolk, Virginia.

The US Navy used every waking hour and many d ifferent methods in trying

to find it, but none bore fruit. They had to face the fact that they had lost one

of their most lethal and valuable weapons, a nuclear submarine. When all

options seemed only to lead to dead ends the Navy brought in naval officer

John Craven. His job was to recoup what was left of the salvage operation

and file a report about it. A report that undoubtedly would be stored in a cab-

inet never to be opened again. That the US Navy could lose track of a subma-

rine was unheard of. It was an embarrassment that no one seemed eager to

talk about. However, Craven had other ideas. He put together a group of ex-

perts from a wide range of fields, including mathematicians, submarine advi-

sors and salvage professionals. Their job was to come up what they believe

would be the best guess of where the submarine sunk based on their respec-

tive background. They made many d ifferent scenarios with d ifferent factors

included . They each made scenarios of where the submarine was heading

and could have happened to it to make it sink. Craven then took all the scena-

rios and calculated an average location by using Bayes‟ theorem of probabili-

Chapter 9 - Feedback and communication Playable Design

Page 92 of 212

ty
28
. He used this newly calculated average to start up a new search mission.

He was determined to find the submarine and he was sure that this new loca-

tion was the right one. And he and his team were successful. In fact, they

were so successful that they found USS Scorpion lying on the bottom of the

ocean less than 200 meters of where the average of the Bayesian model said it

would be. John Craven had done what the US Navy was not able to. By com-

bining the knowledge and experience of many experts, he found what no in-

d ividually lead salvage mission was able to. (Sontag, Drew, & Drew, 2000, p .

88-123)

This story illustrated the power of collective knowledge. By getting input

from people with d ifferent backgrounds the feedback will be more complete.

Allowing, for instance, graphical artists to follow discussions among pr o-

grammers can help the kind of “outside the box” thinking creative processes

like game design require. Having open and free access to information about

the project is a good way of facilitating this kind of cross-d isciplinary know-

ledge sharing. If the information is restricted or d ifficult to access, getting

feedback from the d ifferent sections of the development becomes harder and

the feedback itself less valuable. Sharing and enabling easy access to relevant

information is the first step towards tapping in to the full potential of your

team.

By creating a sense of ownership among the individual team members, you

run the risk of making everyone a designer. There should be a small team of

designers who are responsible for the design of the game, but that does not

mean the ideas from the rest of the team should not be taken into account .

The designer team is the critical filter for ideas and feedback from the rest of

28

 In short, Bayes’ Theorem of probability is a formula that is used to compute posterior probabil-

ities by revising prior probabilities. Read more on Wikiped ia.org

(http:/ / en.wikiped ia.org/ wiki/ Bayesian_probability).

March 2007 Chapter 9 - Feedback and communication

Page 93 of 212

the development team, maintaining the same overall look as John Craven in

his search for the lost submarine. A common vocabulary that makes it easier

to d iscuss ideas and give feedback to each other, and this also promotes a

sense of shared responsibility and ownership. Another way of easing com-

munication between the d ifferent team members is to fin d canonistic gamep-

lay elements and ensuring that all team members have the same interpreta-

tion of these. If everyone uses the same words for describing their feelings

and opinions about mechanics or design choices, the process of giving and

receiving feedback will run much smoother and with less misunderstandings.

9.1 Short feedback cycles

For all product development processes, one of the most important elements is

the feedback cycles. Designing in a vacuum is rarely a successful approach

and has often lead to products that do not live up to user demands and ex-

pectations. The longer the feedback cycles are the longer it takes to spot mis-

takes and problems with the product and the longer it takes to fix them. The

aim is to have as short cycles as possible. The principles presented in this

chapter all have the overall goal of compressing the feedback cycle in order to

make the d istance between the initial idea and a playable version of the game

much shorter. Currently it can in some cases be as long as one whole year

(Biessman & Johnson, 2000), or at least many months. If it was shorter the

feedback earned from play testing would be available earlier when there was

still time to correct the errors.

Larman underlines the importance of rapid feedback by paraphrasin g a UK

study on 1.027 software development projects where 82% of the projects r e-

port that using the waterfall method or similar sequential development m e-

thods is the number one issues that lead to the overall failure of the project:

Chapter 9 - Feedback and communication Playable Design

Page 94 of 212

Case study: Short feedback loops

Late feedback during the production of Trade Empires (2001) resulted in a wrong order
of priority:

“If we had done more beta testing, with a larger group and earlier on, we would have

gotten the kind of outside feedback that would have helped us realize that some of the
tradeoffs we were making were going the wrong way. We didn't miss some features
nearly as much as other people did -- we were so used to the game that we adjusted
our play style and underestimated how important the missing features were.
We did our best to show the game to as many veterans and rookies as we could get
into our office. But just not enough eyes saw Trade Empires, especially without having
a Frog City person at their elbow to explain away any possibly ambiguous elements of
the interface or game rules” (Bernstein, 2002).

This suggests that [...] the approach of full requirements definition fol-
lowed by a long gap before those requirements are delivered is no longer
appropriate. The high ranking of changing business requirements sug-
gests that any assumption that there will be little significant change to re-
quirements once they have been documented is fundamentally flawed,
and that spending significant time and effort defining them to the maxi-
mum is inappropriate (2004, p. 74).

Rapid and frequent feedback reduces project uncertainty. It allows the devel-

opers to make frequent ad justments and to learn from them (chromatic, 2003,

p . 8). Defective elements are quickly d iscovered so that new actions and d i-

rections can be taken. When reading the postmortem articles is becomes ap-

parent that the view of most developers is, that in order to test the “fun fac-

tor” properly the game has to be in a state of publishable quality. It is not u n-

common that games go through a very long process before being tested for

playability. Even The Cerny Method proposes a rather long feedback cycle for

testing playability. They speak of a first playable as the testable version of the

game. However, we can see from the problems mentioned in chapter 4 and 5

that there is a need for faster and earlier feedback.

The Cerny Method has proven to be a very useful and successful method of

developing games. But it is missing the early feedback many of the agile

software development methods are p roposing. The gameplay can be tested

March 2007 Chapter 9 - Feedback and communication

Page 95 of 212

much faster by doing lightweight prototyping. Creating small prototypes of in-

sulated gameplay mechanics can be a very fast way of determining if the d e-

sign is properly defined . There are many tools available on the market for

prototyping. We will not go as far as to recommend a specific one
29
, as it often

comes down to personal preference and level of experience. Developers look-

ing into this should use the tool they are most comfortable with and which

fits the game they are making.

9.2 Collecting feedback

The knowledge gained from the design process must be conveyed effortlessly

to other team members. One approach is to use a Wiki system. In short, a

Wiki system is a website where the users can alter and contribute to the con-

tent of the site by adding and revising the stored information. If a user delib-

erately or unintentionally changes or erases part of the content, it can be cor-

rected very easy by using the built-in revision system that tracks all changes

and the original information can be retrieved . The most famous use of a wiki

system might be Wikipedia.org, a free user-driven encyclopaedia written and

edited by experts, non-experts and enthusiasts from all over the world . It is

formidable way of relinquishing control over the voices of design. It is exactly

this form of non-management that has paved the way for huge success of the

internet (Weinberger, 2002, p . 23). It is about cutting out the middlemen and

letting the inmates run the asylum.

29

 There are numerous tools available on the market for lightweight prototyping, both free

and commercial ones. To name a few; Microsoft‟s XNA Game Stud io Express (free – very

advanced IDE), Google‟s SketchUp (free – flexible 3D drawing program), GameMaker

(free/ commercial – flexible 2D game maker), Blitz Basic / Blitz Max (commercial – flexible

2D/ 3D IDE), Adobe Flash (commercial – advanced vector based 2D drawing and program-

ming IDE), PyGame (free – Python programming framework), Blender (free open source –

flexible 3D drawing / programming environment).

Chapter 9 - Feedback and communication Playable Design

Page 96 of 212

9.2.1 Sharing

Tim Ryan (1999) proposes some guidelines where every phase of the game

development process is covered from idea to release. The aim is to create a

document that describes in detail how to handle every situation before the

project starts. Based on the docum ent the production is a matter of following

the d irections described , until every feature is implemented and the software

is ready to be tested and released . Ryan‟s guidelines for creating the needed

documentation fit with this belief of an all-knowing designer. Ryan's thor-

ough description of how to write a game design document can be useful for

storing the knowledge of a project but it is problematic to believe that it is

possible to predict all problems before the production starts. Object oriented

analysis and design theory (Mathiassen et al., 2001, p . 15) emphasize that the

benefits of a design document is to create a connection between the d ifferent

stages in development. The document should be brief and accurate to allow

focus on the important parts. The reason for this is to stimulate the creative

effort within the development team by harnessing inspiration from the design

document.

The agile method Scrum use daily 15 to 20 minutes stand -up meetings to faci-

litate knowledge sharing. The purpose of the meeting is to update the team

on the progress of each team member, and if a problem occurs it is the team‟s

responsibility to solve the problem together (Schwaber & Beedle, 2002, p . 40-

47). If the company using this practice is afraid to fail and sees this as a com-

petence problem with the employees, the stand-up meeting can be a proble-

matic and an unpleasant experience. If team members feel intimidated by

these meetings, the purpose is lost. In this case, the openness that should be

the result of this approach will be nonexistent. The organization needs to

support the selected method 100 percent, and embrace a free communication

March 2007 Chapter 9 - Feedback and communication

Page 97 of 212

structure that can illuminate problems, and at a later stage turn them into

challenges that can benefit the production

9.2.2 Short and simple

The Landing Pilot is the Non-Handling Pilot until the "decision altitude"

call, when the Handling Non-Landing Pilot hands the handling to the Non-

Handling Landing Pilot, unless the latter calls "go-around," in which case the

Handling Non-Landing Pilot continues handling and the Non-Handling

Landing Pilot continues non-handling until the next call of "land" or "go-

around" as appropriate. In view of the recent confusions over these rules, it

was deemed necessary to restate them clearly. - Brit ish Airw ays memoran-

dum, quoted in Pilot Magaz ine, December 1996
30

It is important to maximize the information that is passed to others in order to

prevent any information getting lost in the process. The Lean method r e-

commends using an A3 sheet of paper as the standard documentation form

for projects
31
. This forces the designer to rethink the level of complexity of the

information he is trying to communicate (Poppendieck & Poppend ieck, 2003,

p . 157-159). A single sheet of A3 paper might seems as a very small area in

which you have to fit large amount data into, but this is exactly why this ex-

act size is useful. If the data is any larger it should be split into more docu-

ments instead . If using a Wiki or similar system, artificial restrictions can be

inserted into the system that forces the writer to uses less than e.g. 5.000 cha-

racters. Large documentation could confuse the readers and might leave

more questions than they answer. Often the reader will seek out the original

30

 This quote is reprinted as written in Andrew Hunt and David Thomas‟ The Pragmatic Pro-

grammer (2000, p . 217)

31
 Poppendieck and Poppend ieck lists in their book Implementing Lean Software Development

(2007, p . 158) a very useful, although short, checklist for creating an A 3 documentation. The

checklist contains advice such as use as few word s as possible, and encourages the writer to

use figures and graphs to underline the information.

Chapter 9 - Feedback and communication Playable Design

Page 98 of 212

Case study: Feedback enhances the game design

The designers of Deus Ex (2000) learned the hard way that good ideas on paper might not
be so good in reality. Instead the only way to know is to play it and get feedback:

“When Gabe Newell from Valve came down and played our prototype missions, he correct-
ly identified the utter lack of tension in our skill and augmentation use, as written up in the
design doc and ably implemented by the coders. The worst was confirmed when Marc
LeBlanc, Doug Church, Rob Fermier, and other friends from Looking Glass Studios and
Irrational Games played the proto-missions and came to the same conclusions. Actually
using skills and augmentations revealed things that merely thinking about them could nev-
er have revealed.
We took the criticism, and with it in mind, lead designer Harvey Smith revised the skill and
augmentation systems pretty thoroughly, proposing an elegant system of consumable re-
sources and time passage, all tied to skill level. This increased the tension level, provided
new rewards, and allowed players to think and make informed decisions. Harvey also pro-
posed a revision to the augmentation system, introducing an energy cost for their use
(something I had foolishly rejected earlier on). Again, this gave us the opportunity to hand
out items that would replenish energy -- in other words, we instantly had more things to
hand out to players as rewards. It also introduced a level of tactical thinking to augmenta-
tion use that makes the system work. None of this would have happened without proto-
type missions and some harsh (but fair) criticism they allowed” (Spector, 2000).

author in order to get verification on uncertainties that might have arisen

from reading the material.

Another thing to be aware of when sharing knowledge is that tacit know-

ledge is hard to communicate in a document, and up to 50 percent of the in-

formation may be lost when information is passed on the others in written

form. After two handoffs there is only 25 percept of the original knowledge

left, after three handoff it is down to only 12 percept (Poppendieck &

Poppendieck, 2007, p . 77). Lean suggests that the best alternative is to use face

to face communication to answer all of the questions that may arise in a han-

doff situation. Face to face communication is useful on a daily basis and can

help to solve urgent problems. The aim is to have as few handoffs as possible

and that is where a Wiki system or another system with easy access is appli-

cable. When information is shared it is important that the content is not d i-

luted in the process. The tacit knowledge the original author processes is not

always easily conveyed in written form. The A3 document can be a good

March 2007 Chapter 9 - Feedback and communication

Page 99 of 212

choice in combination with face to face communication. Beware though of the

pitfalls of oversimplification. All possible questions must be answerable by

the documentation. Do not dumb down the documentation, which will only

lead to similar problems as over-documentation.

9.3 Press ‘OK’ to cancel

Canceling projects have always been an unmentionable part of the game in-

dustry. It is something you always fear and speak of in hushed tones afraid

that someone with the authority to actually cancel your project will hear you.

But as Cerny and John (2002) states so clearly, canceling a bad project is good.

If the feedback is suggesting that the design you are currently working on is

not going to become entertaining for the player, cancel the project in time.

Canceling projects is not about p unishing the development team for sluggish

work or not meeting deadlines. It is about saving time and money and in-

stead focus it on new ideas and concepts. It is as the team behind the Exper i-

mental Gameplay Project at Carnegie Mellon University so poetically stated

it: “Heavy Theming Will Not Salvage Bad Design (or „You Can't Polish a

Turd‟)” (Gabler, Gray, Kucic, & Shodhan, 2006). Cancel the project before you

have spent too much time and effort on it and move on to other things. Even

though development so far has taken up months of valuable pre-production

time it is always better to cancel a bad project and move on to others instead

of forcing yourselves to work on something that both your gut feeling and the

feedback has proven to be a subpar product. “A penny saved is a penny

earned” as Benjamin Franklin once so wisely stated it.

Properly implemented feedback cycles can save the development team pr e-

cious time and energy by being delivered on time. The important thing for

feedback is the speed and timing of it. Excellent feedback delivered too late is

Chapter 9 - Feedback and communication Playable Design

Page 100 of 212

less useful than med iocre feedback voiced when actions could be taken to

implement the concerns expressed .

March 2007 Chapter 10 - Flexible Design

Page 101 of 212

10 Flexible Design

―You could not step twice into the same river; for other waters are ever flow-

ing on to you.‖ - Heraclitus

Without doubt the more interesting trends to come out of the analysis of the

postmortem articles, was the fact that the game developers who started out

with a small initial concept and gradually expanded the design over time,

ended up with having a more constraint free and relaxed development period

and ultimately ended up with a greatly polished product. In the light of hind-

sight, this trend might not be the most surprising but clearly not the one we

were expecting to find . At the other end of this spectrum were the “hard

core” developers that created the games that ended up winning one or more

awards for their technical achievements. They were, rightfully, very proud of

their games, but also admitted that it had been a long and exh austing jour-

ney, one that often involved long hours and little social life, for some even to

the extent losing their significant other due to the high workload . Moreover,

game development should never become so important that you lose yourself

in the process. When personal expenses becomes this high the development

process is deeply flawed
32
. Not that incremental development approach eli-

32

 Chris Taylor, the creator of games such as Dungeon Siege as mentioned earlier in this report,

gave a keynote speech at the D.I.C.E. Summit 2007 (a yearly conference hosted by The Acad-

emy of Interactive Arts & Sciences) in February 2007, about the importance of not working

too much or too hard . Two quotes from the speech are worth referring: “Creators don‟t stop

creating when they leave the office” and Taylor said that at first he questioned whether or

not publishers, who are investing millions of dollars in a game, would appreciate how game

creation at Gas Powered would come after health and family. “They were okay with it” be-

cause they have kid s too, he sa id . “The ind ustry is growing up ”. That this comes from Chris

Taylor makes it all the more interesting, since any given person on the development team on

his last game Dungeon Siege had more than 1.500 man-hours of overtime. A staggering nu m-

ber by any stand ard . He realized that this had to change and the entire culture at his game

development company Gas Powered Games was changed . On their latest game Supreme

Commander they managed to get this number down to about 100 man-hours. The game itself

is as of writing this getting rave reviews from around the globe currently having a MetaCritic

rating of 90.

Chapter 10 - Flexible Design Playable Design

Page 102 of 212

Case study: Early prototyping

The development of Ratchet & Clank (2002) involved a lot of prototyping in the early

phases in order to determine the design of the game:

“Even though the concept behind Ratchet & Clank was ambitious for us (integrating RPG
elements into an action-platformer), we were careful not to cram too much stuff into the
initial design.

[…] For these reasons, we planned the game layout much more carefully than we had on

past titles. We had a pretty good idea of how long it would take to build each level, but we
also knew that plenty would go wrong during the production process. So even though we
had time to do 20 levels, we cut back to 18 at the very beginning.

We also made sure that nothing went into the design unless we were very sure that it was
going to work. Early prototyping was the key here, but so was an attitude of general re-
straint. There were a few wild concepts that everyone was excited about, but had we inte-
grated them into the macro, the project probably would have slipped. Ultimately, we were
able to put about 90 percent of what we planned into the game - a record for us” (Price,
2003).

 minates the overtime or the hard work involved in making games, but it

seems that the developers had more mental energy left. It is as Julian Gold

states it “Start small. Get bigger through small incremental steps” (2004, p . 11)

that seems to give the developers more energy and incentive to “think ou t-

side the box”.

Flexible design is the very core of adaptive game development. Without flex-

ibility in the design, none of the other parts would be achievable. It goes

without saying that you have to be flexible in order to be adaptive. In this sec-

tion, we will look closer at tools such as set-based and modular design. We will

also look at the importance of delaying your decisions until you have more,

and less incomplete, information at hand to base decisions on. Th ere is a ra-

ther consistent myth in the software and game development industry that

freezing the design is helpful for controlling production and keeping it on

track.
33
 According to the myth, adding changes later in the production will

33

 For example of this myth see Rollings & Adams (2003, p . 17), Fristrom (2002, p . 50) and

Reinhart (2000) and many more of the postmortem articles.

March 2007 Chapter 10 - Flexible Design

Page 103 of 212

delay shipment of the final product substantially and equally increase the

overall cost. The idea is that it gives the developers much needed constraints

to working within by freezing the design. Keeping the fundamental gamep-

lay concepts open for redesign might for some seem as a nightmare scenario.

Agreeing on specific solutions and then build ing the design on top of this cer-

tainly is a much more manageable approach but as we will try and emphasize

with this section, it is also one of the reasons why many games struggle to

remain coherent and have a well-designed of gameplay experience. Being

flexible in the design is much more than just having more options for color

styles for the main characters. It presents a fundamental paradigm shift in the

mindset of the developers. Designers must have the courage to make bold d e-

cisions that might go against the initial ideas but seen in a broader perspec-

tive will lead to a better game. It is about not being afraid of trying out n u-

merous ideas even if the first ones are working. The reason we feel that flex-

ibility is so paramount in game development is that it is unrealistic to design

everything up front. Almost all elements of game development will change

over time and not planning for it is unwise.

The important thing for game development is to be able to cope with the

changes that unavoidably will arise during development. These changes

might be coming from external surroundings
34
 or internally in the form of

peer feedback. It is naïve to plan your development in the hope that no prob-

lems would emerge in the process. For these reasons, trad itional sequential

development methods are not well suited for game development, as many of

the authors of the postmortem articles also clearly state. Implementing new or

changed elements during sequential development is very hard and often

34

 The surroundings in this case includes, w ithout exclud ing any, the market, the publisher

and other financial interests.

Chapter 10 - Flexible Design Playable Design

Page 104 of 212

Case study: Iteration in the design

Things on paper do not always turn out as envisioned when implemented in playable pro-
totypes, as the developers of Age of Mythology (2002) learned:

“Ensembles's basic design process is to get the game playable early and then tweak it un-
til it is fun. This applied to virtually every feature in the game. Some features changed a
million times, and we were willing to abandon things that just didn't work, even when it
was painful.

Age of Mythology's God Power feature is a good example of this process in action. On pa-
per, our initial concept of God Powers and Heroes sounded good: Heroes would have a
button on the interface to target God Powers wherever the selected Hero happened to be
- simple enough.

Unfortunately, when we got the feature in the game and started playing with it, it was
awful. Having to have a Hero in the place where you wanted God Power devolved all
combat tactics to selecting all you units and clicking on the enemy Hero. This led to He-
roes constantly getting killed” (Fischer & Street, 2003).

leads to delay since much has to be redesigned to cope with these new ele-

ments.

Agile software development on the other hand, is, just as the name implies, a

way of developing software that is more on its toes than “trad itional” soft-

ware development. In order to achieve as short feedback cycles as possible

game development must take on some form of iterative (or agile) develop-

ment process. Doing sequential development is not a feasible process when

creating software products that must live up to shifting markets and/ or

changing requirements. While the vast majority of game development indus-

try is developing their games with sequential development methods, the ones

applying a more agile approach clearly state this as an advantage.

In game development you constantly have to reassess what you have and

make sure that the production is still on track. Alternatively, you often have

to struggle hard to get the product finished even though you are aware of

shifting markets and/ or erroneous products. Iteration is, as Julian Gold says;

“[...] how Mother Nature does it, after all. [...] Iteration is so fundamental that

it is probably impossible to avoid it” (2004, p . 11). Instead of making a big

March 2007 Chapter 10 - Flexible Design

Page 105 of 212

game all at once, it could prove to boast moral and publisher confidence if the

game is developed from a very humble and limited core starting point, and

when proven to work, more features could be added. This also has the added

bonus of the game being playable throughout the entire production. This

would eventually lead to a better and more balanced game because deficits

and weak areas are spotted early on.

Retrofitting new gameplay elements into the design is seldom a productive

way of working. Retrofitted elements can in most cases easily be spotted and

are often singled out in game reviews as being tacked on or out of place
35
. Of-

ten great gameplay emerges from the synergy of many d ifferent game m e-

chanics and exactly therefore all elements have to be redesigned or reconsi-

dered in order for the game to w ork completely satisfactory. Designing the

individual mechanics in a vacuum can also lead to a lack of overall vision

leaving the game fragmented or unstructured .

10.1 Playing the game

There are basically two types of design approaches, one that ensures that the

execution is done properly and one that ensures that the end product is ap-

plicable. It is about either “build ing the product right”, or “build ing the right

product”.
36
 They may seem similar both in name and execution but they fos-

ter very d ifferent development views (Sommerville, 2001, p . 420). As seen in

35

 The game The Legend of Zelda: Twilight Princess (2006) was in development in-house at Nin-

tendo for many years before it was eventually released for both Nintendo‟s current consoles;

the GameCube and the Wii. Since the game had been in development for many years it was

initially planned as a GameCube title, but the release of Wii required that a high profile game

such as Zelda would be released simultaneously for the new Wii console and the older G a-

meCube. The problem however was the control scheme for the Wii is rad ically d ifferent from

the GameCube and many reviews, namely GameSpot.com, also noted that this control

schemed seems very much out of place and clearly retrofitted into the design.

36
 Note the order of the word s right and product.

Chapter 10 - Flexible Design Playable Design

Page 106 of 212

the postmortem articles, the game industry has historically been very con-

cerned with build ing its product right, making sure that it worked properly

on a technical level
37
. This might originate from the early years of the industry

where it was not uncommon for computer games to be developed by a single

person or very small teams. Most, if not all of the people working in the in-

dustry had a background in engineering; hence they were very concerned

with reducing development risk, since game productions were becoming

larger and more expensive. Traditionally this was done by outlining all poss-

ible scenarios and working out all the d ifficult design on paper or in large

prototypes before decid ing on whether or not to start up a full production. If

this was decided then the game “just” had to be developed according to the

design documentation.

In trad itional software development the d iscussion about which approach is

right has turned almost religious with both sid es arguing that theirs is the on-

ly proper way of developing software product. In connection with computer

game development there really is only one right way of doing it; building the

right product. Even though patching might prove to be the bane of the en tire

industry non-engaging gameplay is an even bigger threat. Computer games

are all about having fun, or at least being entertained in interesting ways. This

is exactly why technical achievements in computer games matters less com-

pared to entertainment value. Seeing technical stunning graphics helps little if

the “fun factor” is absent, and the only way to cut this Gordian knot is by in-

corporation of rapid feedback into the production and build ing flexibility into

the design.

37

 You could always argue against this by looking at the increasing number of patches that

continues to plague any PC game (and now also internet connected consoles).

March 2007 Chapter 10 - Flexible Design

Page 107 of 212

10.2 Delaying decisions

Making decisions that are based on incomplete information is illogical at best

and fatal for the product at worst. Wait until the last responsible moment

(Poppendieck & Poppendieck, 2003, p . 57) with making decisions. The impor-

tant thing to note here is the “last responsible moment”. Just as it cripples the

project if decisions are made too early, the impact of decisions made too late

is equally d isastrous. The U.S. Marines works towards the 70 percent solution,

the decisions should not wait until the ever angle is figured out and tho-

roughly calculated . It is often ineffective in compared to decid ing to move

forward . Recklessness in decision making not only connected with making

hasty decisions. So when is now now? When do you have enough information

at hand to make a sound decision? Rule of thumb; if you can wait, then you

should wait, if not, decided on the information you have (Poppendieck &

Poppendieck, 2003, p . 57). That is the hard part, and most likely you will not

be able to find the perfect moment, but you mu st always have a notion of the

last responsible moment in mind. Experience from and general knowledge

about the problem domain also helps to demine when to maintain options

and when not to (Poppendieck & Poppendieck, 2007, p . 32).

Chapter 10 - Flexible Design Playable Design

Page 108 of 212

Figure 13: The assumed cost of change rises over time as the production proceeds (Beck, 2002, p. 21)

The curve in Figure 13 shows the assumed cost of change in a normal produ c-

tion. Changing elements later in production will cost more than elements

changed early. This is most certainly true in trad itional sequential developed

methods such as the waterfall method. Much has to be redesigned and the

project might be forced to redo the initial design phase again, leading to

shipping delay and increased costs. That is exactly why the notion of delay-

ing decisions is so important. Christensen & Kreiner (1991) speaks of the con-

textual uncertainty that surrounds the project. It concerns the d ilemma of hav-

ing to make decisions based on a very limited knowledge. Christensen &

Kreiner writes: “[…] a project's actual results very likely are evaluated on a

changed knowledge base and on other premises than they were founded on.”

(1991, p . 43)
38
.

38

 Our translation from the original Danish text.

March 2007 Chapter 10 - Flexible Design

Page 109 of 212

Figure 14: The contextual uncertainty is much higher in the initial phase of the production, when

little information is available (Christensen & Kreiner, 1991, p. 41)

That is why freezing the design too early in production will lead to increased

costs, because most elements in game development changes over time. The

need for flexibility in game development call for another and less sequential

development method in order to result in successful products. It is all about

keeping your options open
39
.

10.3 Set-based design

An excellent method to keep the design options open is to incorporate set-

based design. Set-based design goes back a long way and halfway around the

39

 There are times when some elements of the game in d evelopment have to be frozen. Games

in already established series usually have very limited room for character innovation and or

series-defining gameplay mechanics. Games such as Warhammer 40.000 would seem strange

and out-of-character if they d id not feature The Space Marines. For others, like game develop-

ers Naughty Dog, starting all over has worked very successful with their Jak & Daxter series.

The second and third installment in the series was a far cry from the original game than

founded the series.

Chapter 10 - Flexible Design Playable Design

Page 110 of 212

globe. It origins from Japan and to get a bearing of what exactly that it is, we

need to go back to where it all began.

10.3.1 Land of the Rising Sun

In 1921, Kiichiro Toyoda joined his father‟s thriving loom production comp a-

ny Toyoda Automatic Loom Works. The future was looking bright and pros-

perous for the Toyoda family business
40
. In fact it was going so well that Kii-

chiro wanted to expand the production to include automobiles. He went to

the only place in the world for hands-on knowledge about car manufacturing,

the birthplace of the modern mass-produced car; Detroit in USA

(Poppendieck & Poppendieck, 2007, p . 2-5). Henry Ford was notorious for be-

ing very proud and very open about his Ford Motor Company so Kiichiro

quickly learned how to produce cars “the American way” (Poppendieck &

Poppendieck, 2003, p . 1-2). Returning to Japan early in the 1930s Kiichiro

spent some years build ing automobile factories, and in 1936 the first Toyoda

car left the factory and success seemed to have no end in sight. But then

World War II erupted and effectively put a stop to the dreams of Kiichiro and

his cars.

After WWII Kiichiro‟s company was under pressure due to the gloomy finan-

cial state of war torn Japan. The population was poor and demand was

scarce. He realized that producing cars “the American way” with mass pro-

duction was no longer feasible (Poppendieck & Poppendieck, 2007, p . 4).

Mass production required a steady stream of raw materials and a stable mar-

ket with purchasing power, the two things that Japan had none of.

40

 The D in Toyoda was replaced by a T in the car manufacturing company we know tod ay as

Toyota Motor Company. Reasons for this vary on the source of the information, some states it

as a easier way to write the name in Japanese as it requ ires two less strokes (Poppendieck &

Poppend ieck, 2007, p . 3), others that the since Toyota requires exactly eight strokes to writes

is it considered as lucky since eight is a lucky number in Japan (Wikiped ia.org, 2007)

March 2007 Chapter 10 - Flexible Design

Page 111 of 212

To cope with this Kiichiro spent the following years working on his vision of

“Just-in-Time” production, where no element of the finished product was

produced until right before it was needed. In 1962 the Toyota Production Sys-

tem (TPS) was introduced companywide. It more or less singlehandedly cat-

apulted Toyota to become Japan‟s largest car manufacturer and the second

largest in the world (only surpassed by General Motors). Even though the

success of Toyota was apparent for all to see their production system was

largely ignored by all others in the industrial production world . It was not

until the first oil crisis in 1973 that other companies started to look at Toyota.

Before the crisis most companies were growing quickly and had little trouble

selling all the products they m anufactured . The oil crisis changed all that.

Almost all larger companies took a hit during the crisis and had to look long

and hard at every production they had . One of the only companies that

emerged more or less unscarred was Toyota, so naturally all started to look at

why that was.

10.3.2 Design more

While the automobile manufactures around the world was flocking to Japan

to take a closer look at Toyota and its production system the company also

geared a lot of academic interest, mainly from James P. Womack, Daniel Roos

and Daniel T. Jones. They had read Taiichi Ohno‟s book Toyota Production Sys-

tem: Beyond Large-Scale Production (1988) and were intrigued by the success of

Toyota and wanted to spread the knowledge of the “Toyota Way” to others.

In their book The Machine That Changed the World from 1990, they laid the

foundation of what was to become know in the west as Lean Production and

Chapter 10 - Flexible Design Playable Design

Page 112 of 212

eventually set-based design
41
. The reason why Lean Production became so

popular was the rising complexity in the development and design process.

More and more departments with d ifferent and often conflicting agendas

were trying to put their mark on the products, in the hope that their contribu-

tion was making the product better.

This often lead to overdesign resulting in complex p roducts that the end -user

had a hard time figuring out how to use, or even worse d id not fill the need it

was indented for. The affordance of the design, as Donald A. Norman calls it

(2002, p . 9-11), must be apparent for the user to fully understand . Norman‟s

description has gained wide recognition, if fact the term Norman Doors has

been derived from his book.

Figure 15: How do you open this door? Pull or push the handle?

41

 The term “Set-Based Design” (SBD) was never used in the description of the Toyota Pro-

duction System, but referred to as a “d ynamic model” of the product development process. It

was Ward et al. (1995) and later Sobek et al. (1999) that coined the term “Set-Based Concur-

rent Engineering” (SBCE). Ballard transferred the concept of the set -based approach to the

design phase and appropriately named it “Set-Based Design” (2000).

March 2007 Chapter 10 - Flexible Design

Page 113 of 212

So to be able to cope with all these demands and desires, the design process

has to take upon a d ifferent approach. This is what the Lean method was d e-

signed for. Traditionally development would take on some form of point-based

design approach, whereas ideas which have to be implemented later will

have to confine to the previous developed design. Instead of redesigning all

elements to make the new elements fit in their optimal form, the new ele-

ments are ad justed to fit the design they are being implemented in.

Doing the design set-based is exactly opposite. You delay commitment to one

single design and continue work on many d ifferent designs. The best combi-

nation of the gameplay elements and/ or game mechanics is chosen on the ba-

sis on what current moment seems optimal. All additional options are main-

tained throughout production until final decisions are made. The Lean me-

thods herein the set-based design approach, often strike people as counterin-

tuitive as most other development methods explicitly state that in order to

move fast in the development phase you have to make some decisions, lock

them and then move on designing the next element. But as Ballard states it is

the very notion of developing multiple solutions that gives the team more

time for analysis and therefore contributes to an overall better design

(Ballard , 2000). As Figure 16 and Figure 17 exemplifies, the d ifference be-

tween point-based and set-based design is not so much in what you make,

but in the way you think about it and how you embark upon doing it.

Chapter 10 - Flexible Design Playable Design

Page 114 of 212

Figure 16: Trying to schedule a meeting with the

point-based approach (Poppendieck & Poppendieck,

2003, p. 38).

Figure 17: Scheduling a meeting with the

set-based approach (Poppendieck &

Poppendieck, 2003, p. 39).

With the set-based approach Person A states from the beginning what alter-

native he has and Person B then look at her alternatives and finds one that fit

with the overall schedule for them both. Person A has to do more work in-

itially but the next step(s) are much shorter and more hassle-free, meaning

the overall time spent is shorter. It is all about keeping the design options

open. If the designs of specific elements are locked down before complemen t-

ing elements are designed the later elements have to be retrofitted into the

overall design. In connection with game development that is almost always a

crippling solution.

Toyota considers a broader range of possible designs and delays certain deci-

sions longer than other auto companies do, yet has what may be the fastest

and most efficient vehicle development cycles (Sobek, Ward , & Liker, 1999, p .

68)

Toyota deployed set-based design as the core element of the design process.

Instead of decid ing on one specific chassis and then fitting the engine and in-

terior elements into (and thereby running the risk of cutting features of the

A: We need to
meet

B: My best time
is 10:00. Can
you make it?

A: No, I can't.
How about

14:00?

B: Uh, aldready
booked. Can we
meet at 15:00?

A: No, 15:00 is
bad. 9:00?

A: We need to meet. My
best times are 10:00-

13:00 and 15:00-17:00

B: OK, let's meet at
12:00-13:00

March 2007 Chapter 10 - Flexible Design

Page 115 of 212

engine since it might not fit into the chassis) the d ifferent engineering d e-

partments designed many alternatives and then they in cooperation, decided

on what designs complemented each other best. Toyota invented set -based

design out of necessity. They wanted to stay competitive and to continuously

provide the customers with cars that fit their demands and at the same time

made Toyota‟s manufacturing system flexible enough to cope with shifting

markets.

10.3.3 Design more to save money

This meant that Toyota would develop and design a large array of alternative

options for each car, which upfront was more expensive and more time con-

suming but in the long run was extremely time effective and flexible since all

elements could be replaced within days/ weeks instead of going all the way

back to redesigning the dominating element. The cost of change curve takes on

a rather d ifferent shape as seen in Figure 18. You become less vulnerable to-

wards feedback, both from tests and the surroundings.

Chapter 10 - Flexible Design Playable Design

Page 116 of 212

Figure 18: The cost-of-change curve when using set-based design (Beck, 2002, p. 23).

Using set-based design instead of the arguably more manageable point-based

design introduces a high cost and high level of workload initially, but leaves

the production extremely adaptable for changes later in development. Ther e-

fore, it lowers the cost of change significantly in the long term. It does not fla t-

ten the curve but makes it rise less dramatically.

Set-based design is exactly about the d ifference between designing and mak-

ing. If you are unsure on what exactly to make or how to integrate it all to-

gether, the point-based approach will only lead to much rework. New ele-

ments that prove not be to working in conjunction with existing design will

lead to larger iterations back to previous proven design. It is very hard to

make a five course d inner without a recipe for a customer who is not even

sure of what he prefers to eat or might not ever have eaten anything ever be-

fore. In the making phase of development experimentation is not as preferred

as it is in the design phase. Set-based design is very useful for making “key

architectural decisions, that once made, will be very expensive to reverse”

March 2007 Chapter 10 - Flexible Design

Page 117 of 212

(Poppendieck & Poppendieck, 2007, p . 160), such as fundamental gameplay

mechanics in computer games.

10.3.4 Solution Space

Iterations should instead be used to make d ifferent possible solutions, and as

the design phase progresses the solution space should become gradually nar-

rower (Sobek, Ward , & Liker, 1999, p . 79). It is not about gathering require-

ments for your product; it is about digging for them. The requirements will

often be d iscovered in during the initial design phases and not in the first

project-establishing meetings. The real requirements are very hard to find

and are often clouded in assumptions, misconceptions, and politics (Hunt &

Thomas, 2000, p . 202). All elements are designed in their respective design

spaces where they are “free”, even encouraged, to explore all possible altern a-

tives to their domain (Ballard , 2000).

Figure 19: The individual elements and their overlapping solut ion space.

It would seem that designing more options and continuously maintaining

them through the design phase is a waste of time and money, but as men-

Gamplay
Mechanic 1
alternatives

Gamplay
Mechanic 2
alternatives

Gamplay
Mechanic 3
alternatives

Chapter 10 - Flexible Design Playable Design

Page 118 of 212

Case study: Modular design

Being able to replace elements of the game proved to be a helpful approach for Monolith
the developers of No One Lives Forever 2 (2002):

“The single most important tool we added was the referential prefab system [...]. In other
words, edits made to one file propagate throughout the entire game. For example, if the
sound department wants to add a sound to a door opening and closing, they only have to
modify a single prefab instead of tracking down every single instance of that game.

The primary advantage of this system is that it puts the power in the hands of the people
who need it, without any programmer intervention. A level designer can create a block of
geometry that represents a desk, with which he or she can plan the layout of a given room.
The art team can then build a nicer-looking desk of roughly the same dimensions to replace
the block” (Hubbard, 2003).

tioned it makes the designing all the more flexible and open for ad justments.

All the options developed and maintained never become wasted work even if

they are not used in the final product. They all lead to a larger knowledge

understanding whereas all departments gain a greater understanding of the

evolving product (Ward , Liker, Cristiano, & Sobek, 1995, p . 49-58). Further-

more, the options developed are ripe for reuse on future productions.

10.3.5 Designing in modules

Set-based design ties closely to what modern software development methods

refer to as modular design. In most areas of software development, the soft-

ware product evolves over time, both during development and after initial

release. Therefore, it becomes very important how you design your systems

in order to prevent unnecessary dual-work.

By encapsulating the gameplay mechanics in independent modules they can

easily be replaced , and / or remove later in the development if some proves to

be not working as intended. Using dummy art assets in the lightweight proto-

types is an excellent way of speeding up the process of creat ing these proto-

types. If or when better elements are need they can easily be replaced , just

March 2007 Chapter 10 - Flexible Design

Page 119 of 212

like pieces in a jigsaw puzzle. This modular approach has to be planned for

from the start of the prototyping phase else it only leads to extensive rework.

Just as Kiichiro Toyoda created the Toyota Production System and laid the

foundation for set-based design in order to cope with the harsh market cond i-

tions on the Japanese domestic market, so must game developers look beyond

trad itional point-based design approaches and embrace set-based game de-

sign to survive and continuously evolve as the market becomes more and

more uncertain and computer games become more and more complex.

Chapter 11 - Testing Playable Design

Page 120 of 212

11 Testing

Playtesting is the single most important activity a designer engages in, and

ironically, it’s often the one designers understand the least about - Fullerton,

et al. 2004, p. 196

Verification and validation with regard to testing is the topic for the present

chapter. Earlier we talked about feedback loops and how designers should

aim to shorten these as much as possible. We have suggested using the con-

cept of short feedback loops in addition with lightweight prototypes which

should allow designers to quickly extract the information needed to decide

the future of an idea. Verification and validation should give the answer of

how to extract this information. We will introduce the concept of play testing

and how this can be used as a tool to acquire feedback from the prototypes.

11.1 Verification and validation

Verification and validation are terms adopted from software engineering

which describes the process of checking whether or not a piece of software

matches the specification and the expectations of the customer. When devel-

oping trad itional software this is a process which starts from the very begin-

ning and continues until the product is shipped . The two terms can seem sim-

ilar, however there is a clear d istinction - verification can be explained as the

concept of build ing the product right, while validation is the concept of build-

ing the right product (Gold 2004, p . 420).

Verification is the process of checking if the software conforms to the specifi-

cation – to test if a program runs correctly and delivers the right output. Vali-

dation on the other hand is a more subjective approach to check if the pro-

March 2007 Chapter 11 - Testing

Page 121 of 212

gram meets the expectations of a customer. The two terms serve very d iffer-

ent purposes of a development cycle and by so we have chosen to downscale

verification in comparison to validation - when developing lightweight proto-

types we are not interested in how they are done, meaning the architecture

behind , but merely the design and visualization of an idea - is not expected

that the prototype itself should be part of a final game. Validation is conse-

quentially more relevant in our context since lightweight prototypes are a

simple confirmation test of an idea. A validation test is made to see if the pr o-

totype is acting the way we expect, hence making us able to draw a conclu-

sion based upon it. In the next section we will introduce some methods which

can be used to perform validation tests in relation to lightweight prototypes.

11.2 Testing in theory

It quickly becomes clear when examining the field of testing that there are

many ways to test a product. Usability testing, focus group testing and bug

testing are some of the more common methods used when evaluating com-

puter games (Fullerton, et al. 2004, p . 196-197). However, useful these tests

might be they serve another purpose than the process of generating and ex-

ploring ideas. Each test has a specific purpose – a range of valid ity one could

say and to try to force more from it will only create a d isordered result. We

wish to introduce the concept of play testing (Fullerton, et al. 2004, p . 196).

This is a term which is developed specifically in relation to game design, but

still shares similarities with test methods used in trad itional software devel-

opment, e.g. think-aloud tests
42
. Fullerton, Swain and Hoffman describe the

idea behind play testing as the process of gaining “[…] useful feedback from

the players in order to improve your game” (2004, p . 196). A keyword in this

42

 A form of testing where the user is asked to say aloud what they are experiencing while

using the program.

Chapter 11 - Testing Playable Design

Page 122 of 212

definition is players - computer games separate themselves from trad itional

software in the sense of not knowing who the end -user is. When developing a

banking system the end -user is known and it is valid to assume that all bank

employees will act in the same way when using the product. This however is

not the case with computer games. It is impossible to generalize the end -user

when talking about computer games.

So who is the player when we want to test our computer games? Most of the

agile development methods refer to what they call the customer or product

owners
43
 as end-users. These methods suggest the use of end -user participa-

tion in the development of the product. This is from the viewpoint of being

able to quicker and more precisely adapt to what the users (really) want and

demand instead of doing more formal and rigid testing towards the end of

the production cycle. Having end-users sitting together with the development

team in game development is much harder and do not make as much sense as

it does in software development. The fact that most computer games have a

rather generic target-group in comparison to for example a booking system

for a travel agency makes it harder to receive objective feedback since it is

based on whether or not the game is fun. Furthermore, the information r e-

43

 The customer and product owner terms are from Extreme Programming (Beck & Andres,

2005, pp. 61-62) and Scrum (Schwaber & Beedle, 2002, s. 34) respectively, but in broader terms

they cover the same ground .

Case study: Early play testing is crucial

To wait with play testing until the game is done is not feasible and creates problems which
are not easily fixed this late in the process. They realized this too late when developing No
One Lives Forever 2 (2002):

“Finally, while play-testing helped balance and tune the game, it should have happened
sooner. Thanks to observing play-testers, we made some crucial refinements to the stealth
system and the opening missions, but we didn't have sufficient time to play-test the entire
game. Play-testing also revealed some design flaws that couldn't be addressed without jeo-
pardizing our ship date. While none of these issues was especially grave, they underscored
the need for start play-testing as early as possible” (Hubbard, 2003).

March 2007 Chapter 11 - Testing

Page 123 of 212

ceived from the use of actual players is everything that was popular 10 m i-

nutes ago and how this stood out (Cerny & John, 2002). Players have a ten-

dency to focus on computer games already known to them consequently the

important things are elements which already exist. Since we aim to create

new ideas through explorative design this is not a viable way to test the

lightweight prototypes.

Therefore, instead of having an onsite end -user sitting side by side with the

game development team, the team often must rely on prior experience, know-

ledge, and old -fashioned gut feeling. The game designers then act as custom-

er proxies (Larman, 2004, p . 152-153) trying to put themselves in the place of

end-users. They ask “stupid questions” about the design and in general try to

scrutinize the overall game development. Software development specialist

Steve McConnell
44
 writes in his book Rapid Development;

Putting yourself on the same side as the customer is one of the best ways
to avoid the massive rework caused by the customer deciding that the
product you spent 12 month on is not the right product after all (McCon-
nell, 1996, p. 16)

The idea of using the designer as an end -user also fits the concept of

lightweight prototyping. The use of prototypes is a rapid and dynamic way of

working. Every idea is explored in timeframes of a few days, even hours if

possible which makes it unfeasible to engage in big formal and structured

tests with players. It is not a process were a single prototype needs testing but

a process were all important game mechanic needs to be tested via proto-

types. If a design team were to make formal test scenarios for all of these it

would be a time and resource consuming task to do. Fullerton, Swain and

44

 Accord ing to website Wikiped ia.org Steve McConnell was named one of the three most

influential persons in the software ind ustry in 1998 along with Linus Torvalds and Bill Gates.

See http:/ / en.wikiped ia.org/ wiki/ Steve_McConnell.

Chapter 11 - Testing Playable Design

Page 124 of 212

Hoffman explain the process of using the game designer to test with as self-

testing (2004, p . 198). The idea is that a lightweight prototype is constantly

evaluated during development by repeatedly playing it. Self-testing can be

compared to what Schultz, Bryant and Langdell refers to as ad hoc testing

where the designer daily goes through a series of thoughts like “I wonder

what happens if I do…?” (Schultz, et al., 2005, p . 287). These simple thoughts

form the basis for the self-testing and through this knowledge is gained re-

gard ing how the game mechanics work and what can be done to improve

them. It is a process which fits the early phases of a development best but can

continue throughout the whole process. The danger of this is that the vision

imagined is not as clear to others as it is to oneself which can lead to a one

sided design. At some point it can be worthwhile showing it to others in o r-

der to identify flaws or improve the design. These can be colleagues, friends

or other confidants who can view the prototype with fresh eyes (Fullerton, et

al., 2004, p . 198). The benefits when using such people is that they are proba-

bly familiar with the project you are working on and by so a thorough intro-

duction to the game is not needed. Nevertheless what this approach has in

simplicity it lacks in objectivity. Using friends, family or colleagues require a

lot of d iscipline in regards to feedback. Too much optimism or pessimism is

often the result when letting such people review the work done. This can d is-

tort the conclusion and give an inaccurate picture of how the prototype in fact

works. To be mindful of this is important and questioning the feedback giv en

can uncover what the participants really think about the prototype. The more

that is known about the prototype the better chance there is to make a quali-

fied judgment of its future.

March 2007 Chapter 11 - Testing

Page 125 of 212

Case study: Play testing reveals design errors

Play testing is the only way to find flaws and errors in the design. The people behind Fire-
team (1998) used play testing as a tool to improve certain aspects of the game:

“I can recall a particular controversy over whether Gunball (a Fireteam scenario similar to
combat football) was balanced enough. Many of the advanced players were complaining
that Gunball’s offense was too hard. Using our Tile Edit tool, we quickly created a few

maps with two endzones for each team (Gunball maps normally only have one endzone).
Through testing the new maps, we discovered some of the problems with Gunball were
unrelated to the maps themselves, but that the offense simply had a disadvantage when
trying to score. So instead of redoing all of our map designs, we tuned the Gunball game
by giving the Gunball carrier a protective drone” (Min, 2000).

11.3 Practical approach

In the following section we will try to give a more tangible approach to how

testing of lightweight prototypes can be done. Even though the play testing

explained in the previous section might seem fairly simple there are some is-

sues to be aware of when conducting self-testing and tests with confidants.

Self-testing can be a challenge where the designers easily get blinded by their

own vision. This is at least what we experienced during our experiments. A

“pat on the back” mentality can easily evolve and instead of looking with crit-

ical eyes on what you are doing you end up gratifying yourself. On the other

hand over-criticism can also destroy the best ideas. A solution to help find a

balance between optimism and pessimism can be to ask some simple ques-

tions – “what is the objective of the prototype?”, “can I think of another solu-

tion?”, “is object X doing what I intended it to do?” etc. Such questions can

both act as help to develop the prototype and give a more tangible element to

measure the prototype against – d id it perform as expected?

The use of confidants is a way of working which can be used in many situ a-

tions. It can be an informal talk at the vending machine or it can be a more

structured meeting where the prototype is presented . The prototypes are very

much a work in progress and to constantly ask colleagues to comment on the

Chapter 11 - Testing Playable Design

Page 126 of 212

work done is both irritating for them and the designer. What we d id during

the experiments was to schedule a weekly meeting where people got a chance

to play and comment on the prototypes made that week. The person(s) be-

hind the prototype would give a brief introduction whereafter each partici-

pant would get the chance to play. This worked very well and created a lot of

feedback which each person could use to improve or change the prototype

with. When conducting such a meeting a series of questions can help as a

starting point for the discussion. Questions such as “ is the game mechanic too

easy?”, “are the controls intuitive?”, “is the game mechanic easy to learn?” are all

examples that can help answering the ultimate question in regards to play

testing – “are the game mechanics fun?” (Schultz 2005, p . 296).

A way of thinking which we adopted from Extreme programming was the

use of pair programming
45
. Not in the sense that we would sit two together

and code but more the idea of having a team member which could evaluate

the work done. We experimented with d ifferent team constellations and

found that even though one person would create the most special but at the

same time most single minded prototype, teams of two or four would create

an overall better prototype with more uniform ideas. The continuous d iscu s-

sion and evaluation in the team was the key element to improving the ideas.

The problem then became that the explorative element in lightweight proto-

typing was lost – it is a fine balance between exploration and evaluation. Four

person groups are definitely too big and resulted in too much polish. The

crazy ideas were often removed from the prototypes since everyone had to be

pleased – it was more a compromise than an explorative prototype. Groups of

two worked well in the sense of exploration and at the same time gave the

possibility for evaluating the work done.

45

 The idea is to sit two persons at one computer and write the program code together. This

should lead to better and more reliable code, since they can work together and continuously

evaluate the program. (Beck 2005, p . 42)

March 2007 Chapter 11 - Testing

Page 127 of 212

A crucial part of developing lightweight prototypes is to use a development

tool which allows the idea to be designed and evaluated quickly. During our

experiments we used a tool called Game Maker
46
 which allowed us - with a

single click on a button – to quickly make an executable version of the proto-

type. By doing so we were able to make frequent tests and evaluate the d e-

sign. The important thing is not whether or not to use Game Maker but to use

a development tool that you are familiar with and allows you to make fre-

quent builds – waiting for a program to compile for hours is not feasible with

regard to lightweight prototype testing.

11.4 Summary

The important lesson to remember about play testing is that it can never been

done enough. To neglect testing can have serious consequences for the prod-

uct if basic elements of the game do not work probably when released . Fu r-

thermore, to use big formal test sessions in relation to lightweight prototypes

is not a viable solution. Instead the methods used have to be an integrated

part of the design process. The process of self-testing and testing with confi-

dants is easy and cheap ways to test if the essential gameplay works as in-

tended. Both methods support the idea of short feedback loops and flexible

design as a way to work explorative. Play testing is the primary source to r e-

ceive the information needed when decid ing how to improve or change a

lightweight prototyping.

46

 Game Maker is a basic d rag-and-drop program for creating games. It allows you to make

everything from simple platform games to advanced 3D games.

Chapter 12 - The EVE Method Playable Design

Page 128 of 212

12 The EVE Method

So far we have been looking at existing development methods in several d if-

ferent fields. We have d iscussed software engineering, innovation and game

design theory in relation to game development. We also had a look at post

mortem articles from game productions, and went on to identify some of the

problems game productions are currently facing. In doing so, we found that

the single largest source of problems is the pre-production phase and the

process of verifying new ideas. This is where our method comes in. We want

to give developers a set of tools to help them refine their ideas for game me-

chanics, a framework which at the end of the day makes the end product bet-

ter and production run smoother. A small change in the beginning of the

project can be all it takes, and in this chapter we will look at one way of mak-

ing this change. We have called our method EVE: Experimentation, Visualiza-

tion and Evaluation.

One of the main goals of our method is knowledge gathering. The more you

know about an idea the better your decisions will be, and we believe in a

hands on approach. In part, this knowledge gathering is done through early

experimentation. The idea behind early experimentation is to look at an idea

from different angles and through a refinement process of trial and error give

the designers a better understanding of their own ideas. This can help reveal

flaws in the design at an early stage of the process, saving considerable work

compared to d iscovering them later on. Assuming that the initial idea is per-

fect is a high risk business, and experimentation helps reducing this risk. For

this reason, creating a safe setting in which mistakes can be turned into cheap

and valuable lessons is the first step towards implementing the EVE method.

Once that mindset is in place, it is time to start visualizing your ideas. While

every idea usually starts on a piece of paper the written word will only take

March 2007 Chapter 12 - The EVE Method

Page 129 of 212

you so far. Nobody would even consider starting a game production without

first making some concept art and the same should be true for prototyping

game mechanics. That is why we suggest making lightweight prototypes as a

way of giving designers an idea of how their ideas will feel when imple-

mented in the game. A playable prototype makes it much easier to convey the

idea to the rest of the development team, and the process of creating proto-

types also gives the designers a better understanding of their own ideas. In

addition, a playable prototype makes evaluation possible.

By evaluation we mean that constantly evaluating your own work as well as

getting evaluation from others. By creating prototypes and experimenting

with d ifferent solution, the designers create something tangible for them-

selves and their team. Simply playing around with your own prototype can

expose weaknesses in the design, and having other developers from the team

try them can further help with this process. Another goal of EVE is to create a

feedback loop for new ideas, where feedback is given as soon as possible so it

can be taken into consideration. We have seen from post mortems that many

developers went 6 months or maybe even a year into production before they

had something playable up and running. We want to turn this trend com-

pletely around.

This method is designed for testing out new ideas, whether that happens in

the pre-production or during the production. The thing to remember is that it

is possible to evaluate elements of the game before the game is completely

finished , and even before the design is finalized . The kind of prototypes we

suggest can be everything from different colored dots moving around on the

screen, testing A.I. behavior, to a fully functional inventory system imple-

mented in the engine. As long as the process from idea to playable prototype

is fast, the tools used to build the prototype does not matter. In pre-

production the engine which will be used for the finale game might not be

Chapter 12 - The EVE Method Playable Design

Page 130 of 212

available or sufficiently understood, and in those cases it is better to use an

existing engine to illustrate the d ifferent mechanics. Later in the process when

a skeleton of the game is up and running, making something in the engine

might be just as easy as using a d ifferent tool. As long as the prototype can be

made in a few days, the tools used for making it are irrelevant. But there is

one important point to remember; prototype code should not be reused in the

final code.

If you are taking the time to make your prototype code of publishable quality,

chances are you are wasting your time. This is the arena for hack solutions,

shortcuts and d irty fixes. The goal here is quickly make something you can

use to illustrate your game mechanics, not something you can copy-paste into

the latest build . There is an additional pitfall here; the more time you spend

polishing your prototype, the less likely you are to trash it if it turns out not to

work. This concept scales perfectly: throwing away two days of work is easier

then throwing away two weeks‟ worth of work. Nobody wants to throw

away half a year worth of work, and that is what our method is trying to save

developers from doing.

However, some game genres will benefit more from this approach than oth-

ers. For instance, strong story based genres like the adventure game will ben-

efit less from this approach, yet it could be used to test mini-games and the

usability of the interface. EVE is a method for testing new concepts and ideas

for game mechanics, if a game‟s main selling points are graphics and story

there is less to be gained from using this approach.

In the following section we will try to elaborate and clarify what the three

stages of the EVE method involves. EVE is more a mindset than a list of tools

that are d irectly applicable in a game development. Lastly we will exemplify

the method through a story which should give an idea of how to use the m e-

thod in a more practical approach.

March 2007 Chapter 12 - The EVE Method

Page 131 of 212

12.1 Experimentation

Failure is an option - the possibility of failure is something which every

project has to deal with. Schedules, models, specifications etc. are all tools to

minimize the risk of failure. However, precise as these may be it is still im-

possible to predict every situation that can occur in a production. The best

way to prevent these situations in a production is to have tried them before

doing it for real. So how do we do that? We suggest a way of working were

you test the essential and cost expensive parts before you go into full produc-

tion. By doing it in a much smaller scale it becomes less risky and more m a-

nageable to make errors. To cancel a project in full production can lead to

economical d isaster, so to testing the vital parts of a production in an env i-

ronment which is both cheap and allows failure might end up saving the

company a lot of money.

 One thing is to be aware of failure; another thing is to embrace it. The essence

of a preproduction phase is to test all the crazy ideas in an environment

where failing miserably are indeed an option. To embrace failure in prepro-

duction is to be financially responsible for the much more expensive produ c-

tion that follows. If you can weed out all the bad ideas by testing them in a

cheaper preproduction you will save the effort and money when 50 people

depends on your work in a later stage of the production.

Exploration as a design tool – it takes a thousand bad ideas to find a good

one and to explore the bad ideas will help you understand the good ones. Ex-

ploration is easier said than done – it requires a lot of d iscipline and creativity

to explore alternative solution to a problem you already solved . To explore

d ifferent solutions is like searching for a proof of concept. You might find the

perfect solution or you might not, but no matter the outcome the time spent

should give you more information and by doing so increase your chances of

making the right decision.

Chapter 12 - The EVE Method Playable Design

Page 132 of 212

Set-based design is a way of thinking where the explorative element is an on-

going process. You keep developing multiple prototypes of the same ideas

were the one which fits the overall design best will be the one used . This way

of working ensures that you always have a game composed of elements

which work together as one unit. If something ceases to work in the context of

the game it can simply be replaced by another element which have been

tested and evaluated by means of prototyping. To try many possibilities

without any prejudices is the key element when working exploratively .

12.2 Visualization

Playing is believing - one picture says more than a thousand words, which is

the concept of visualization. Computer games are not something you can eas-

ily imagine or explain. You have to try it and in order to do so you have to

build it or parts of it. What might seem fun on paper can turn out to be te-

d ious when playing it. Our intention is to introduce the tangible element in

game development as soon as possible through the concept of lightweight pro-

totypes. The use of these makes it possible to clarify by means of playing if

and how an idea works in relation to the overall vision. They act as a small

confirmation test from which you can draw information on whether or not

the idea is worth pursuing.

Lightweight prototypes does not mean first playable – the term prototype is

used in many situations throughout the game industry and have d ifferent

meanings. However where these often represent a bigger fraction of the finale

game, a lightweight prototype is made to illustrate the smallest par ts of a

game – game mechanics. Prototypes such as first playable, vertical slice, alpha,

etc. are all an important part of a game development, however they serve a

d ifferent purpose than a lightweight prototype and when compared the

March 2007 Chapter 12 - The EVE Method

Page 133 of 212

amount of time and resources spent separates them clearly from lightweight

prototypes.

The production timeframe of a lightweight prototype should be no more than

a few days, even hours if possible, since the idea is simply to gain enough

knowledge about the idea to be able to m ake a sound judgment regard ing the

future of it.

Keep it simple – lightweight prototypes are not just a way of working but

also a way of thinking. It is easy to make things more complex, but the point

of making a lightweight prototype is to illustrate the basic idea. The urge for

doing beautiful graphics, animations, story etc. must be downscaled , since

you only risk wasting valuable time at this point. That does not mean you

should exclude everything that makes a prototype look great – of course not.

However, looks or other features must never be prioritized over the game

mechanics. If an idea cannot stand on its own without cool graphics or im-

pressive sounds, it probably is not such a good idea anyway.

Single out the key elements - What is the core of your game? What do you

want the player to experience? Why is this element important for the game?

These are all questions which can help you find the core of your game – the

game mechanics. Before the prototyping phase can start a clear understan d-

ing of what these are must be in place. The use of keywords, brainstorming

and “the six thinking hats” method are all ways of working which can help

you find and understand the game mechanics. If you end up with multiple

game mechanics – which will probably happen - prioritize them after level of

importance and use this as a starting point for the visualization phase.

When doing lightweight prototypes, keep the scope at a manageable size.

Each game mechanic should get its own set of prototypes, and trying to pr o-

totype several mechanics at once will risk clouding the output. It is easier to

Chapter 12 - The EVE Method Playable Design

Page 134 of 212

test the idea if the variables are kept to a minimum. Make many small proto-

types instead and test them individually. This should give a much clearer

view of which ideas that could work in a final game and which ones should

be scrapped, and once tested the good prototypes can always be combined

later for further testing.

Abstract prototypes - a reason for using prototyping is to quickly reach a

point where something playable provid es a clear picture of the vi-

sion. Using a lot of time on fine tuning certain elements and details like

graphics and sounds will only increase the impression slightly - a red dot

which takes 1 minute to make can at this point work fine in contrary to using

an animated character which took you numerous hours to make. One could

argue that it is the details which d ifferentiate great computer games from bad

ones. True, however, it is testing and evaluation which is the goal of the visu-

alization process, so save the details for the final game and instead use the

time to explore other facets of the idea. Roughly said the process of making

prototypes is about quantity and not quality – to explore the d ifferent possi-

bilities by means of many prototypes instead of using time polishing a single

one.

Modular prototypes – the success of a game production depends on how

well you handle changes. Even small developments will face the need to

change something at some point so you can either plan for it in advance or

face the problems as they emerge. The use of prototyping is a perfect way to

plan for changes. The idea is to think of lightweight prototypes as Legos; each

prototype is a module that when, combined with others, is united to form

something greater. Each game mechanic is tested through numerous proto-

types where each implements a d ifferent version of the same mechanic. When

combining the ideas in a final game it becomes easy to exchange one mechan-

ic for another if you realize that it does not fit or the design has been change

March 2007 Chapter 12 - The EVE Method

Page 135 of 212

in some way. Modular prototyping is about having more red Legos ready if

the one you tried first does not fit your house.

12.3 Evaluation

Play testing is a never-ending process – the first step to improve something

is to understand where and why the flaws are and the only way to do this is

through evaluation. The process of using lightweight prototyping is a dynam-

ic and ongoing development of ideas which consequentially limits the possi-

bility for formal and structured testing sessions. Instead testing must function

as a natural part of the design process. Self-testing is a way to approach eval-

uation where playing the prototypes should help to understand what and

why something is done wrong. Through this continuous testing you gain a

broader understanding of the idea and the context in which it functions. To

ask yourself questions concerning the idea and the relation to the rest of the

game and to compare it to similar prototypes will help you see new perspec-

tives or even whole new solutions to the problem.

However the most important way to gain an understanding of the idea is to

have other people evaluate the prototype. Feedback is by far the most r e-

warding way to evaluate anything and neglecting it will only hurt the game.

The use of confidant-testing fits the lightweight prototyping approach were

colleagues or other confidants act as test persons. But it is important not to

make this into a formal test session; at this point such an elaborate setup will

be a waste of time. Instead , invite a colleague in for a cup of coffee while you

show your work and simply make a mental note of the things he or she says

and does relating to the prototype. You will go back to working on the proto-

type the minute your colleague leaves anyway, so there is no need to docu-

ment the feedback more extensively then on a Post-it note. All information is

Chapter 12 - The EVE Method Playable Design

Page 136 of 212

welcome at this point, and you can always d ismiss irrelevant comments later

on. Remember, you are not build ing a game at this stage, but simply explor-

ing ideas, so to receive all the feedback possible will only increase your

chances to build a great game later on. Furthermore, the input from others

helps you to see new sides and by doing so prevents your ideas to be single-

minded.

Make throw-away prototypes – so finally you managed to make a really

great prototype which is ready to be implemented in a final game. However

tempting this might be it is important to stress that this should not be an op-

tion. Do not expect your work to be used for anything else than evaluating

the concept. The prototype should be nothing more than a source to extract

information from. When making prototypes there are no rules of how to

make them and there should not be since the goal is to get something up and

running as soon as possible. To demand that the work done can be used in a

final game only limits the creative process and makes people think about is-

sues such as implementation, appearance and reusability which are not im-

portant at this stage – when doing lightweight prototypes it is always more

important to focus on what you made instead of how you made it.

This way of thinking is something which needs to be adopted by the entire

development team in order for lightweight prototyping to work. Appearance

and eye-candy is an effective way to sell prod ucts that lacks quality them-

selves and to promote this as an important feature when prototyping r e-

moves the focus from game mechanics and onto something which this

process is not intended to be used for. To make lightweight prototypes is to

accept the absence of high value concept art, setting, and sound and to focus

on game mechanical issues exclusively.

Be proud of your work – in order to receive feedback you need to show your

work to others. While this sounds good on paper, it is easier said than done.

March 2007 Chapter 12 - The EVE Method

Page 137 of 212

To show a prototype in which you have spent valuable time implementing a

couple of dots that moves around does not seem as a good way to impress

your boss. However, for a developing team using lightweight prototyping it

is important to promote this behavior. If not, you risk that people start prior i-

tizing visuals over game mechanics in order to “sell” their product better to

colleagues. When working with lightweight prototypes it requires a show -off

element among the developers for the process to work – everyone has the

same goal and everyone should appreciate the value of a lightweight proto-

type.

Make decisions as late as possible – the information regard ing game m e-

chanics may be somewhat limited in the beginning of a production and to

base the entire game design on these may turn out catastrophically. Instead of

making important decisions at such an early stage of the production, the r a-

tional thing would be to wait until you know more. Evaluation of lightweight

prototyping should be the key element in obtaining the knowledge needed in

order for you to make a reasonable decision. Does it take one, five or ten pro-

totypes to give me the information I seek? Well, the answer is of course not

black or white, however, a rule of thumb is to keep prototyping until you

simply cannot wait any longer to make a decision. The idea is to make impor-

tant decisions regard ing game mechanics at the last responsible moment since

you might gain new information which changes the context and requires a

new decision, making previous decisions a waste of time.

12.4 A day in the life of a rapid prototyper

An id le Tuesday morning, John is pouring his first cup of coffee for the day.

As a designer on the company‟s latest project he‟s got his work cut out for

him, and the expectations are high. Walking to his desk he runs the combat

Chapter 12 - The EVE Method Playable Design

Page 138 of 212

mechanics over in his head . They are still only a rough sketch, but the basics

for the third person shooter are there.

Coffee in hand, John heads for his workstation. But before he gets there, Pe-

ter, one of the other designers, grabs his arm - his latest prototype is ready

and he needs some feedback on it. Peter‟s prototype is simple; a box moving

through a blocky environment and a movable crosshair corresponding to the

Xbox controller which has been hooked up. Pressing 1-5 on the keyboard

cycles through d ifferent possible control mappings, allowing for a compar i-

son later on once more pieces are in place. They d iscuss the prototype for a

few minutes before John returns to his workstation.

On the wall in their office hangs Post-it noted describing d ifferent game m e-

chanics, ranging from inventory system features and reload mechanisms to

special AI behavior and suggestions for puzzles. John pulls down the note

named “active reload”, reading the two line description as his computer

boots up... “Make reloading more interesting by adding an element of tim-

ing”. He starts working on a small prototype, spending the first half of the

day experimenting with d ifferent ways to implement this element of timing.

Throughout this p rocess all the designers are there to provide each other with

feedback once something is ready. As soon as something playable is up and

running, one or both of the other designers spend a few minutes trying it out

and commenting on it. Once the prototype is good enough to explain the

idea, a short description of the prototype is written in the wiki along with a

link to the file. Their wiki allows everyone to get a feeling for how the project

is coming along. The publisher can see which d irection the game is tanking,

and people on the development team can try the d ifferent prototypes and

comment on them.

March 2007 Chapter 13 - Conclusion

Page 139 of 212

13 Conclusion

This project will outline a method based on proven practices which can en-

hance and support the process of creating, exploring and evaluating ideas in

the context of game development.

The computer game industry has during the last decades experienced a

steady increase in both developers and the overall production cost of their

computer games; we want bigger and more complex computer games to en-

tertain ourselves with. The demand for delivery on time from investors and

publishers has now forced the developers to search for structure and man-

agement when developing computer games. The possibility of failure is a

constant fear within computer game development since the amount of money

at risk has simply become too high. The parallel world of software engineer-

ing has faced many of the same problems which we see in the computer game

industry today. Here, the solution to better products and working condition s

came in the form of methods and practices. They managed to tame the wild

beast of creativity by means of structure which ensured a viable environment

to develop software in. Even though we see some of the same tendencies in

computer game development regard ing structure and process management

there is still a great leap from the way game developers approach their prod-

ucts compared to software developers. Many aspects of a computer game d e-

velopment can be compared d irectly to aspects of software development –

elements like implementation, functionality and usability is all key concepts

in both areas. However, the reason why the process of software development

cannot be d irectly adopted by game development is due to the fun factor. This

inherent quality of a game separates it from trad itional software by bringing a

subjective element into the development process. The fun factor is depended

Chapter 13 - Conclusion Playable Design

Page 140 of 212

on the individual person and is not d irectly measurable which creates a d if-

ferent setting for a possible method.

We have during this project developed a method which takes the fun factor

into account. We have through an analysis of the game development industry

identified several problem areas, such as lack of flexibility, feedback and v i-

sion as a result of an unstructured p re-production, which led to an inad e-

quate design and consequently made the problems escalate throughout the

actual production. We have argued that a game development when going in-

to full production converts from being a creative and explorative process to

one comparable to a software development process. This along with the prob-

lem areas suggests that the point of insertion for a change in practices is in the

design and conceptualization process where the foundation for the entire

game should be created and explored and where errors left unattended will

damage the ongoing production.

The EVE method is our answer on how to structure the design and conceptu-

alization process. We have tried to address the problems found in the analysis

through proven theory and actual practices. Theory from software engineer-

ing along with innovation theory has been the source of inspiration on how to

solve these problems and our experiments has been the tool to understand

the theory. EVE stands for Experimentation, Visualization and Evaluation and

offers a variety of practices and tools to help the game designer gather know-

ledge. This makes him able to draw a conclusion in regards to the idea - is it

worth pursuing? The method should not be seen as a sequential process but

as a unit where you use and cycle between the three phases as required . Fu r-

thermore, the method has a specific range of valid ity; it was develop with the

purpose of exploring and testing game mechanics.

The three elements of EVE can be explained as:

March 2007 Chapter 13 - Conclusion

Page 141 of 212

Experimentation: To explore all potential solutions and to accept the possibil-

ity of failing when doing so. By exploring an idea at an early stage you r e-

move risks which could potentially result in d isaster later on in the produ c-

tion. Fail early and succeeded later is the mantra to remember when experiment-

ing.

Visualization: To convert the idea from thought to a more tangible medium.

By using lightweight prototypes you are able to create something concrete

which can help to understand the idea better. Furthermore, these will help

convey and communicate the idea to the rest of the production team. Com-

puter games are all about playing, so the design should become playable as

soon as possible.

Evaluation: To play test the prototype in order to reveal flaws or find im-

provements. Evaluating the prototype through self-testing or testing with confi-

dants will give you a better understanding of which mechanics that work and

which that do not. The intention of the evaluation phase is to create short

feedback loops, thus improving both the prototypes and the ongoing produ c-

tion.

We have used the term method supplement to explain where and how the EVE

method fits into a production. It is not a whole method by itself but more of

an add-on to existing methods and should be seen as a way to improve or

change the way a design process is done. We have designed it with agile d e-

velopment methods in mind – it embraces and uses the principles from these.

To sum up we have developed a method which builds on principles of exp e-

rimentation, visualization, and evaluation which takes the fun factor of a

game into account by means of creative process control, flexible design in

form of prototypes and easily accessible feedback through early testing. This

Chapter 13 - Conclusion Playable Design

Page 142 of 212

should let you, as a game designer, focus on the important aspect of a game –

the game mechanics.

March 2007 Chapter 14 - Future research

Page 143 of 212

14 Future research

In this chapter we will take a look at what could have been done to make the

project take on another point of view, as well as how our report can be used

as a starting point for future research.

Using the post mortem articles we were able to look at game productions

from the past 8 years in order to get a little inside information about some of

the problems these productions have been facing. This could be taken a step

further by doing a deeper, more quantitative analysis of these articles and try

to find more subtle d ifferences between the d ifferent productions. Altern a-

tively, a more qualitative analysis of the industry could be made through in-

terviews with several d ifferent developers from different companies. Both

these options could be the starting point for an entire project studying the

field of game development, and where our research have been goal oriented a

project like that would be more of a more explorative nature. Furthermore, an

inquire like that could be expanded to look at cultural d ifferences between

American, European and Asian game studios, development over time, or

even development within the big successful game studios like Blizzard or EA

Games which have been making computer games for over a decade.

A completely d ifferent angle would be to look closer to other fields than

software development. We have not been looking at TV and movie produ c-

tions in this project and there might be some things to learn from those kinds

of entertainment productions. While lacking the interactivity element from

computer games, there is still a consumer which wants to be entertained in

one way or another. Experiences with gathering feedback on new movie con-

cepts might very well be useful for game studios working on new produ c-

tions, beyond the aforementioned focus group.

Chapter 14 - Future research Playable Design

Page 144 of 212

As far as testing goes, our own testing the method have purely been on a pr o-

totype level were we explored the d ifficulties attached to this way of working

with new ideas. The real test of the method is to implement it in at an existing

game studio and follow the process closely. This could be done either by in-

cluding it as a way of thinking during the pre-production, or it could be in-

corporated into the work method of designers working on projects which are

already in production.

The method we have proposed is primarily targeting the concept and pre-

production phase. This could be used as a starting point for describing in d e-

tail a whole process built on the mentalities we describe. For such a project,

our report could serve as a foundation on which to build a more extensive

and complete method describing a game production from start to finish.

Chapter 16 - Appendix B – Postmortem source material Playable Design

Page 202 of 212

16 Appendix B – Postmortem source material

Release date Title Developer Publisher

R
eview

 rating

 B
udget

D
evelopm

ent tim
e

D
evelopers

C
ontractors

C
ode length

March 1998 Sanitarium DreamForge DreamForge 84 16 37 0

June 1998 X-Files Fox Interactive Fox Interactive 63 48 30 3

October 1998 Trespasser DreamWorks Interactive DreamWorks Interactive 56 7.000.000$ 36 39 0

November 1998 Heretic II Raven Software Activision 84 1.100.000$ 11 32 0

December 1998 Thief: The Dark Project Looking Glass Studios Eidos 90 3.000.000$ 30 19 5

December 1998 Fireteam Multitude Multitude 75 2.500.000$ 30 14 3

June 1999 Descent 3 Outrage Entertainment Interplay 85 2.000.000$ 31 19 0

July 1999 Heavy Gear 2 Activision Activision 82 19 20 0

August 1999 System Shock 2 Irrational Games Looking Glass Studios 92 1.700.000$ 18 23 0

August 1999 Draken: Order of the Flame Surreal Software Psygnosis 81 2.500.000$ 28 23 2

September 1999 Command and Conquer: Tiberian Sun Westwood Studios Electronic Arts 80 36 33 0

October 1999 Age of Empires II: Age of Kings Ensemble Studios Microsoft 91 24 40 0

November 1999 Star Trek: Hidden Evil Presto Studios Activision 53 12 22 0

November 1999 SWAT 3: Close Quarter Battle Sierra Studios Vivendi Universal Games 84 2.200.000$ 18 20 0

November 1999 Unreal Tournament Epic Games GT Interactive 93 2.000.000$ 18 16 0 350000

November 1999 Resident Evil 2 Capcom Capcom 87 1.000.000$ 12 9 1 200000

November 1999 Gabriel Knight 3 Sierra Studios Sierra 79 4.200.000$ 36 45 3 350000

March 2000 Soldier of Fortune Raven Software Activision 82 23 20 2 406044

June 2000 Vampire: The Masquerade -- Redemption Nihilistic Software Activision 76 1.800.000$ 24 12 8 366000

June 2000 Diablo II Blizzard Entertainment Blizzard Entertainment 88 30 40 0

June 2000 Deux Ex Ion Storm Eidos 91 34 20 4

July 2000 Heavy Metal: F.A.K.K. 2 Ritual Entertainment Gathering of Developers 79 2.000.000$ 18 18 1 364825

September 2000 Star Trek: Voyager—Elite Force Raven Software Activision 86 24 20 13 919749

November 2000 Hitman: Codename 47 Io Interactive Eidos 73 3.000.000$ 36 36 0

November 2000 No One Lives Forever Monolith Productions Fox Interactive 89 24 18 0 110000

March 2001 Fallout Tactics Micro Forte Interplay 81 18 27 0 300000

March 2001 Black & White Lionhead Studios Electronic Arts 90 5.700.000$ 37 25 3 2000000

April 2001 Tropico PopTop Gathering of Developers 82 1.500.000$ 24 10 1 170000

June 2001 Startopia Mucky Foot Productions Eidos 85 3.000.000$ 24 19 2 335000

June 2001 Operation Flashpoint Bohemia Interactive Studios Codemasters 86 600.000$ 50 10 3 250000

September 2001 Trade Empires Frog City Software Eidos 69 15 9 3

October 2001 Dark Age of Camelot Mythic Entertainment Mythic Entertainment 87 2.500.000$ 18 25 5

October 2001 The Italian Job Pixelogic SCI 58 15 9 0

November 2001 Cel Damage Pseudo Interactive Electronic Arts 67 2.000.000$ 24 16 12 800000

November 2001 Star Wars Rogue Leader: Rogue Squadron II Factor 5 LucasArts 90 3.500.000$ 9 30 2

December 2001 Jak & Daxter: the Precursor Legacy Naughty Dog Sony 90 36 35 0

January 2002 Medal of Honor: Allied Assult 2015 Electronic Arts 91 19 27 2 469644

January 2002 Draken: The Ancients' Gates Surreal Software Sony 80 30 30 5 326000

April 2002 Freedom Force Irrational Games Electronic Arts 89 18 25 1

April 2002 Spider-Man Treyarch Activision 78 18 40 0 300000

April 2002 Dungeon Siege Gas Powered Games Microsoft 85 44 27 5 800000

May 2002 Aggressive Inline Z-Axis Acclaim 85 14 25 2

June 2002 Neverwinter Nights BioWare Atari 89 60 75 65

October 2002 No One Lives Forever 2 Monolith Productions Vivendi Universal Games 91 19 21 0 150000

October 2002 Age of Mythology Ensemble Studios Microsoft 90 30 50 10 1500000

October 2002 Gothic II Piranha Bytes JoWood 79 11 13 40

October 2002 Hitman 2: Silent Assassin Io Interactive Eidos 86 7.400.000$ 23 70 0

November 2002 Ratchet & Clank Insomniac Games Sony 89 18 40 1

December 2002 Big Mutha Truckers Eutechnyx THQ 66 24 40 0

January 2003 Battle Engine Aquila Lost Toys Atari 74 30 16 2 380000

March 2003 Splinter Cell Ubisoft Ubisoft 88 5 76 18

March 2003 Amplitude Harmonix Sony 85 15 20 7 380000

March 2003 Jurassic Park: Operation Genesis Blue Tongue Interactive Universal Interactive 70 22 26 0

May 2003 Rise of Nations Big Huge Games Microsoft 89 30 26 16 837939

July 2003 Star Wars: Knights of the Old Republic BioWare LucasArts 94 30 70 28

August 2003 T.R.O.N. 2.0 Monolith Productions Buena Vista Interactive 84 24 24 0 853300

September 2003 Homeworld 2 Relic Entertainment Vivendi Universal Games 85 39 30 5

October 2003 Jak II Naughty Dog Sony 88 24 48 0 841000

October 2003 Freedom Fighters Io Interactive Electronic Arts 82 6.700.000$ 30 110 0

November 2003 Secret Weapons over Normandy Totally Games LucasArts 80 18 26 0 246513

November 2003 Project Gotham Racing 2 Bizarre Creations Microsoft 93 24 40 62 219538

November 2003 Prince of Persia: The Sand of Time Ubisoft Ubisoft 92 27 65 0 1263580

March 2004 The Suffering Surreal Software Midway 81 26 37 23

April 2004 Hitman: Contracts Io Interactive Eidos 77 12.000.000$ 12 110 0

June 2004 Shadow Ops: Red Mercury Zombie Studios Atari 59 24 37 0

July 2004 Spider-Man 2 Treyarch Activision 81 24 60 0

September 2004 Kohan II: Kings of War Timegate Studios Take Two 81 27 35 0

September 2004 Katamari Damacy Namco Namco 86 18 21 0

September 2004 The Sims 2 Maxis Electronic Arts 90 42 140 0

September 2004 Silent Hill 4: The Room Konami Konami 76 30 70 0 500000

November 2004 Axis & Allies Timegate Studios Atari 65 22 39 0

November 2004 Ratchet & Clank 3: Up Your Arsenal Insomniac Games Sony 91 18 65 2 2000000

November 2004 Alien Hominid The Behemoth 0~3 Entertainment 78 18 12 0 780000

April 2004 Half-Life 2 Valve Entertainment Vivendi Universal Games 96 71 40 15

December 2004 Star Wars: Knights of the Old Republic 2 Obsidian Entertainment LucasArts 86 15 33 0

January 2005 Resident Evil 4 Capcom Capcom 96 30 80 0

April 2005 Psychonauts Double Fine Majesco Entertainment 87 11.800.000$ 54 42 5 592009

September 2005 Farenheit / Indigo Prophecy Quantic Dream Atari 84 24 80 0

October 2005 Stubbs The Zombie Wideload Games Aspyr 75 17 12 56 600000

November 2005 Guitar Hero Harmonix Red Octane 91 9 49 0 335100

November 2005 Gun Neversoft Activision 77 24 60 0

November 2005 Peter Jackson's King Kong: Official Game of the Movie Ubisoft Ubisoft 80 15.000.000$ 24 280 0

April 2006 Tomb Raider: Legend Crystal Dynamics Eidos 82 24 80 0

June 2006 Titan Quest Iron Lore Entertainment THQ 77 30 39 0 533063

July 2006 Prey Human Head Studios Take Two 81 62 30 0 750000

September 2006 Defcon Introversion Software Introversion Software / Valve 84 95.000$ 12 2 0 100000

November 2006 Tony Hawk's Downhill Jam Toys for Bob Activision 69 18 40 0 924721

November 2006 Resistance: Fall of Man Insomniac Games Sony 88 24 100 0

March 2007 Chapter 17 - <Bibliography

Page 203 of 212

17 Bibliography

Agile Alliance. (2001). Manifesto for Agile Software Development. Retrieved

February 25, 2007, from http:/ / agilemanifesto.org/

Alden, S. (2000, December 20). Postmortem: Ritual Entertainment' s Heavy Metal:

F.A.K.K. 2. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20001220/ alden_01.htm

Arey, D. (2004, January). Naughty Dog's Jak II. Game Developer , pp. 40-48.

Ballard , G. (2000). Positive vs. N egative Iterations in Design. Proceedings

Eighth Annual Conference of the International Group for Lean Construction.

Brighton, UK.

Barrett, K., Harley, J., Hilmer, R., Posner, D., Snyder, G., & Wu, D. (2002,

February 27). Postmortem: Pseudo Interactive' s Cel Damage. Retrieved February

25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20020227/ wu_01.htm

Beck, K. (2002). Introduktion til Extreme Programming. IDG.

Beck, K., & Andres, C. (2005). Extreme Programming Explained - Embrace Change

- Second edition. Addison Wesley.

Bernstein, R. (2002, January 22). Postmortem: Frog City' s Trade Empires.

Retrieved February 25, 2007, from Gamaustra.com:

http:/ / www.gamasutra.com/ features/ 20020125/ bernstein_01.htm

Biessman, E., & Johnson, R. (2000). Postmortem: Raven Software' s Soldier of

Fortune. Retrieved December 14, 2006, from Gamaustra.com:

http:/ / www.gamasutra.com/ features/ 20000927/ biessman_01.htm

Bilas, S. (2000). Postmortem: Sierra Studios' Gabriel Knight 3. Retrieved

December 14, 2006, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20001011/ bilas_01.htm

Blossom, J., & Michaud, C. (1999, August 13). Postmortem: LucasLearning' s

StarWars DroidWorks. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19990813/ droidworks_01.htm

Bono, E. d . (2000). Six Thinking Hats. Penguin Books Ltd .

Chapter 17 - <Bibliography Playable Design

Page 204 of 212

Bradshaw, L. (2005, January). Avoid ing Sequelitis in the Sims 2. Game

Developer , pp. 38-43, 63.

Brooks, F. (1975). The Mythical Man-Month - Essays on Software Engineering.

Addison Wesley.

Cage, D. (2006, June). Indigo Prophecy - The nightmare of the original

concept. Game Developer , pp. 24-29.

Carter, B. (2003, April). Lost Toys' Battle Engine Aquila. Game Developers , pp.

50-58.

Cerny, M., & John, M. (2002, June). Game Development - Myth vs. Method.

Game Developer , pp. 32-36.

Chan, K., Spagnolo, S., Stevens, S., Hagger, N., Chau, D., & Carlton, G. (2003,

March 17). Postmortem: Blue Tongue Software' s Jurassic Park: Operation Genesis.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20030317/ chan_01.shtml

Chaveleh, A. (2004, November). Two Timing: Timegate Studios' Kohan II and

Axis & Allies. Game Developer , pp. 34-38.

Chey, J. (2002, May). Irrational Games' Freedom Force. Game Developer , pp.

44-49.

Chey, J. (1999, December 9). Postmortem: Irrational Games' System Shock 2.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991207/ chey_01.htm

Christensen, S., & Kreiner, K. (1991). Projektledelse i løst koblede system - ledelse

og læring i en ufuldkommen verden. Jurist- og Økonomforbundets Forlag.

chromatic. (2003). Extreme Programming - Pocket Guide. O'Reilly Media.

Condon, R. (2002, October). Z-Axis's Aggressive Inline. Game Developer , pp.

42-48.

Cooper, R. (2006, August). Reestablishing an Icon - The peak and pitfalls of

Tomb Raider: Legend. Game Developer , pp. 24-28.

Corry, C. (2001, August 1). Postmortem: Lucas Arts' Star Wars Starfighter.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20010801/ corry_01.htm

March 2007 Chapter 17 - <Bibliography

Page 205 of 212

Darsø, L. (2005). Findes der en formel for Innovation? Børsens

Ledelseshåndbøger.

Darsø, L. (2001). Innovation in the Making. Samfundslitteratur.

Darsø, L. (2005). Prejekt frem for projekt. Retrieved December 16, 2006, from

http:/ / www.itu.dk/ courses/ I/ F2006/ session10.pdf

Delay, C., Arundel, V., Arundel, T., Chambers, G., & Knottenbelt, J. (2006,

December). Detonating Introversion's DEFCON. Game Developer , pp. 26-29.

Denman, S. (2000, April 18). Postmortem: Surreal Software’s Drakan: Order of the

Flame. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000418/ denman_01.htm

Engel, T. (2002, May 1). Postmortem: Factor 5' s Star Wars Rogue Leader: Rogue

Squadron II. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20020501/ engel_01.htm

Esmurdoc, C. (2005, August). Head Games - Double fine's Phychonautic

break. Game Developer , pp. 30-38.

Fischer, I., & Street, G. (2003, Febuary). Developing Sequels: The Designer's

Dilemma - Ensemble Studios' Age of Mythology. Game Developer , pp. 44-52.

Freedman, D. H. (2000). Corps Business - The 30 Management Principles of the

U.S. Marines. HarperCollins.

Frior, M. (2002, February 13). Postmortem: Mythic' s Dark Age of Camelot.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20020213/ firor_01.htm

Fristrom, J. (2002, August). Postmorte: Treyarch's Spider-Man. Game Developer

, pp. 48-55.

Fristrom, J. (2004, September). The Swinging System of Treyarch's Spider-

Man 2 Game. Game Developer , pp. 26-34.

Fullerton, T., Swain, C., & Hoffman, S. (2004). Game Design Workshop -

Designing, Prototype and Playtesting Games. CMP Books.

Fulp, T., & Baez, J. (2005, May). Indie Power - Rid ing the FBI with Alien

Homainid . Game Developer , pp. 28-35.

Chapter 17 - <Bibliography Playable Design

Page 206 of 212

Gabler, K., Gray, K., Kucic, M., & Shodhan, S. (2006, October 26). How to

Prototype a Game in Under 7 Days: Tips and Tricks from 4 Grad Students Who

Made Over 50 Games in 1 Semester. Retrieved January 23, 2007, from

Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20051026/ gabler_01.shtml

Gold , J. (2004). Object-oriented Game Development. Addision Wesley.

Goodsill, J. (2006, October). Iron Lore's Titan Quest. Game Developer , pp. 34-

42.

Gray, M. W. (2004, February). Totally Games' Secret Weapons over

Normandy. Game Developer , pp. 40-45.

Greig, S., Muzyka, R., & Ohlen, J. (2002, November). Bioware's Neverwinter

Nights. Game Developer , pp. 42-48.

Hao, W. D. (2003, July 13). Postmortem: Tom Clancy' s Splinter Cell. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ resource_guide/ 20030714/ hao_01.shtml

Hastings, B. (2005, February). Up Your Arsenal: On and Offline in Ratchet &

Clank. Game Developer , pp. 28-32, 41-43.

Hirabayashi, Y. (2005, October). The Graphical Styling of Resident Evil 4.

Game Developer , pp. 26-33.

Hubbard , C. (2003, January). Monolith's No One Lives Forever 2: A spy in

H.A.R.M.'s Way. Game Developer , pp. 48-55.

Hubbard , C. (2001, June 8). Postmortem: Monolith' s No One Lives Forever.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20010608/ hubbard_01.htm

Hudson, C., Musyka, R., Ohlen, J., & Zeschuk, G. (2003, December). Combat

System Development on Bioware's Star Wars: Knights of the Old Republic.

Game Developer , pp. 42-46.

Huebner, R. (2000, August 2). Postmortem of Nihilistic Software' s Vampire: The

Masquerade -- Redemption. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000802/ huebner_01.htm

Hunicke, R., LeBlanc, M., & Zubek, R. (2001-2004). MDA: A Formal Approach

to Game Design and Game Research. Game Developers Conference. CMP Books.

March 2007 Chapter 17 - <Bibliography

Page 207 of 212

Hunt, A., & Thomas, D. (2000). The Pragmatic Programmer. Addison Wesley.

IGDA. (2004). Quality of Life White Paper. IDGA.

Imamura, A., & Yamoka, A. (2005, March). What's Inside the Room? The

Horror of Silent Hill 4 Investigated . Game Developer , pp. 34-40.

Imislund, C. (1999, December 8). Postmortem: Activision' s Heavy Gear 2.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991208/ imislund_01.htm

Imlash, W. (2001, October 26). Postmortem: Startopia. Retrieved February 25,

2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20011027/ imlach_01.htm

Jacobson, B., & Speyer, D. (2005, November). Scaling the Cabal - Valve's

design process for creating Half-Life 2. Game Developer , pp. 20-28.

Jobling, P. (2003, December 24). Postmortem: Eutechnyx' Big Mutha Truckers.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20031224/ jobling_01.shtml

Kijanka, B. (2002, September). Gas Powered Games' Dungeon Siege. Game

Developer , pp. 42-49.

Larman, C. (2004). Agile & Iterative Development - A Manager' s Guide. Addison

Wesley.

Leighton, J., & Derrick, C. (1999, October 8). Outrage’s Descent 3. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991008/ descent_01.htm

Lemarchand, R. (2006, February). From smart to finish - Jak X: Combat racing

and the Naughty Dog production method. Game Developer , pp. 17-22.

Leonard , T. (1999, July 9). Postmortem: Looking Glass' s Thief: The Dark Project.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19990709/ thief_01.htm

Li, J. (2002, August 15). Postmortem: Pixelogic' s The Italian Job. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20020815/ li_01.htm

Long, M. (2004, August). The cinematic effect of Zombie Studios' Shadow

Ops: Red Mercury. Game Developer , pp. 34-39.

Chapter 17 - <Bibliography Playable Design

Page 208 of 212

Lopiccolo, I., & Rigopulos, A. (2003, August). Harmonix's Amplitude - The

Sound of the Fury. Game Developer , pp. 40-45.

Löwgren, J., & Stolterman, E. (1998). Design av informationsteknik.

Samfundslitteratur.

Malenfant, D. (2000, January 7). Postmortem: Shiny Entertainment' s Wild 9.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000107/ wild9_01.htm

Mallat, Y. (2004, April). Ubisoft's Prince of Persia: The Sands of Time. Game

Developer , pp. 46-51.

Mathiassen, L., Munk-Madsen, A., Nielsen, P. A., & Stage, J. (2001). Objekt

Orientering Analyse & Design. Marko.

McConnell, S. (1996). Rapid Development - Taming Wild Software Schedules.

Microsoft Press.

Meynink, T. (2000, July 28). Postmortem: Angel Studios' Resident Evil 2 for the

N64. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000728/ meynink_01.htm

Millinger, M. (2002, June). 2015's Medal of Honor: Allied Assault. Game

Developer , pp. 50-58.

Min, A. (2000, January 5). Postmortem: Multitude’s Fireteam. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000105/ fireteam_01.htm

Molyneux, P. (2001, June 13). Postmortem: Lionhead Studios' Black & White.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20010613/ molyneux_01.htm

Napier, J. (2000, March 6). Postmortem: Sierra' s SWAT3: Close Quarter Battle.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000306/ napier_01.htm

Norman, D. A. (2002). The design of everyday things. Basic Books.

Oakden, T. (2001, April 20). Postmortem: Micro Forte' s Fallout Tactics.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20010420/ oakden_01.htm

March 2007 Chapter 17 - <Bibliography

Page 209 of 212

Passetto, C. (1998, December 4). Postmortem: DreamForge' s Sanitarium.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ featu res/ 19981204/ pasetto_01.htm

Pease, S., & Findley, C. (2006, March). Gun - The Good, The Bad and The

Ugly. Game Developer , pp. 34-43.

Pelletier, B., Gummelt, M., & Monroe, J. (2001, February 7). Postmortem: Raven

Software' s Star Trek: Voyager—Elite Force. Retrieved February 25, 2007, from

Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20010207/ pellertier_01.htm

Poix, X. (2006, April). Ubisoft's Peter Jackson's King Kong. Game Developer ,

pp. 28-36.

Poppendieck, M., & Poppendieck, T. (2007). Implementing Lean Software

Development - From Concept to Cash. Addison Wesley.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development - An

Agile Toolkit. Addison Wesley.

Pratchett, T. (2001). The Last Hero. Victor Gollancz Ltd .

Price, T. (2003). Postmortem: Insomniac Games' Ratchet & Clank. Retrieved

December 14, 2006, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20030613/ price_01.shtml

Pritchard , M. (2000, March 7). Postmortem: Ensemble Studios’ Age of Empires II:

The Age of Kings. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000307/ pritchard_01.htm

Reinhart, B. (2000, June 9). Postmortem: Epic Games' Unreal Tournament.

Retrieved January 19, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000609/ reinhart_01.htm

Rhinehart, C. (2006, November). Creeping Dead - Designing the Deathwalk

System in 3D Realms' and Human Head Studios' Prey. Game Developer , pp.

30-36.

Ridgway, W. (2000, February 1). Postmortem: Zombie' s SpecOps: Rangers Lead

the Way. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000201/ ridgeway_01.htm

Rollings, A., & Adams, E. (2003). Andrew Rollings and Ernest Adams on Game

Design. New Riders Publishing.

Chapter 17 - <Bibliography Playable Design

Page 210 of 212

Rookie, F. (2003, October). Monolith's Tron 2.0. Game Developer , pp. 42-47.

Rosenkranz, K. (2003, March). Piranha Bytes' Gothic II: The Interactive Score.

Game Developer , pp. 54-58.

Rouse III, R. (2002, July). Surreal Software's Drakan: The Ancients' Gates.

Game Developer , pp. 40-46.

Rouse III, R. (2004, May). The Game Design of Surreal's The Suffering. Game

Developer , pp. 36-42.

Royce, W. W. (1970). Managinge the Development of Large Software Systems.

Proceedings of IEEE Westcon , 328-338.

Ryan, T. (1999, October 19). The Anatomy of a Design Document, Part 1:

Documentation Guidelines for the Game Concept and Proposal. Retrieved February

25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991019/ ryan_01.htm

Ryan, T. (1999, December 17). The Anatomy of a Design Document, Part 2:

Documentation Guidelines for the Functional and Technical Specifications.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991217/ ryan_01.htm

Saladino, M. (1999, November 19). Postmortem: Sierra' s SWAT3: Close Quarters

Battle. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991119/ startrekpostmortem_01.ht

m

Saunders, K. (2005, April). Jed i Mind Tricks - Choice and Consequence in Star

Wars: Knights of the Old Republic 2. Game Developer , pp. 30-36.

Schadt, T. (2007, January). Postmortem: Not Your Typical Grind - Tony

Hawk's Downhill Jam for Wii. Game Developer , pp. 30-37.

Schaefer, E. (2000, October 25). Postmortem: Blizzard Entertainment' s Diablo II.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20001025/ schaefer_01.htm

Schultz, C. P., Bryant, R., & Langdell, T. (2005). Game Testing All in One.

Thomson Course Technology PTR.

Schwaber, K., & Beedle, M. (2002). Agile Software Development with Scrum.

Prentice Hall.

March 2007 Chapter 17 - <Bibliography

Page 211 of 212

Seropian, A. (2006, January). Chomping at the Bit - Wideload Games' Studio

Experiment Bites Back with Stubbs the Zombie. Game Developer , pp. 24-31.

Sheffield , B. (2006, April). The Wright Stuff - Will Wright on life, the universe,

and everything. Game Developer , pp. B1-B9.

Simpson, J. (1999, May 21). Postmortem: Raven Software' s Heretic II. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19990521/ heretic_01.htm

Smith, B. (2001, October 10). Postmortem: Poptop Software' s Tropico. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20011010/ smith_01.htm

Smith, M. (2007, February). Postmortem: Resistance: Fall of Man. Game

Developer , pp. 28-36.

Sobek II, D. K., Ward , A. C., & Liker, J. K. (1999, Winter). Toyota's Principles

of Set-Based Concurrent Engineering. Sloan Management Review , pp. 67-83.

Sommerville, I. (2001). Software Engineering - 6th Edition. Addison Wesley

Publishing.

Sontag, S., Drew, C., & Drew, A. L. (2000). Blind Man' s Bluff. Arrow.

Spanel, O., & Spanel, M. (2001, December 19). Postmortem: Bohemia Interactive

Studios' Operation Flashpoint. Retrieved February 25, 2007, from

Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20011219/ spanel_01.htm

Spector, W. (2000, December 6). Postmortem: Ion Storm's Deus Ex. Retrieved

Feburary 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20001206/ spector_01.htm

Stojsavljevic, R. (2000). Postmortem: Westwood Studios’ Command & Conquer:

Tiberian Sun. Retrieved December 14, 2006, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000404/ tiberiansun_01.htm

Sussman, D. (2006, February). The Buzz of Harmonix's Guitar Hero. Game

Developer , pp. 24-28.

Takahashi, K. (2004, December). The Singular Desing of Katamari Damacy.

Game Developer , pp. 34-38.

Chapter 17 - <Bibliography Playable Design

Page 212 of 212

Thomas, G., Morichere-Matte, S., & Mosqueira, J. (2003, November).

Developing a Sequal: Evolution, Not Revolution - Relic Entertainment's

Home World 2. Game Developer , pp. 40-45.

Train, T., & Reynolds, B. (2003, June 27). Postmortem: Big Huge Games' Rise of

Nations. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20030627/ train_01.shtml

Upton, B. (2000, January 21). Postmortem: Redstorm's Rainbow Six. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20000121/ upton_01.htm

VandenBerghe, J. (1999, December 3). Postmortem: The X-Files. Retrieved

February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19991203/ xfiles_postmortem_01.htm

Ward , A., Liker, J. K., Cristiano, J. J., & Sobek II, D. K. (1995, Spring). The

Second Toyota Paradox: How Delaying Decisions Can Make Bet ter Cars

Faster. Sloan Management Review , pp. 43-61.

Weinberger, D. (2002). Small Things Loosely Joined. Perseus Publishing.

White, S. (2002, July 10). Postmortem: Naughty Dog' s Jak and Daxter: the

Precursor Legacy. Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 20020710/ white_01.htm

Wikipedia.org. (2007, January 24). Toyota. Retrieved January 24, 2007, from

Wikipedia.org: http:/ / en.wikipedia.org/ wiki/ Toyota

Wyckoff, R. (1999, May 14). Postmortem: Dreamworks Interactiv' s Trespasser.

Retrieved February 25, 2007, from Gamasutra.com:

http:/ / www.gamasutra.com/ features/ 19990514/ trespasser_01.htm

Young, G., Rodriguez, M., & Pickford , C. (2004, March). Bizarre Creations'

Project Gotham Racing 2. Game Developer , pp. 46-54.

	1 Table of contents
	2 Foreword
	2.1 Readership
	2.2 Acknowledgement

	3 Introduction
	3.1 Problem area
	3.1.1 Problem statement
	3.1.2 Project scope
	3.2 Project overview

	4 Game development from the outside
	4.1 Facts about the industry
	4.1.1 Development time
	4.1.2 Budget
	4.1.3 Team size
	4.1.4 Conclusion

	4.2 Game Production
	4.2.1 Game Design versus Game Developmen
	4.2.2 Game Design
	4.2.3 Game Development

	4.3 Software Development
	4.3.1 The Waterfall Method
	4.3.2 Spiral Development
	4.3.3 Agile methods
	4.3.4 Extreme Programming

	4.4 Fun factor

	5 Game Development from the inside
	5.1 Big Design Up Front
	5.1.1 Waterfall versus Agile
	5.1.2 The Design Document
	5.1.3 Burnout

	5.2 Post Mortems
	5.2.1 Flexibility
	5.2.2 Documentation
	5.2.3 Pre-production and the vision
	5.2.4 New ideas

	5.3 Lessons

	6 Case: Io Interactive
	6.1 Idea generation
	6.2 Pre-Production
	6.3 Prototypes
	6.4 Conclusion

	7 Adaptive Game Design
	7.1 Designing versus making
	7.2 Playable design
	7.3 Uncanny Valley
	7.3.1 The Space Pen

	7.4 Ready, fire, aim
	7.5 EVE as a method supplement
	7.5.1 The experiments

	8 Exploration
	8.1 Introduction
	8.2 Getting the great idea
	8.2.1 The process of creativity
	8.2.2 First insight
	8.2.3 Saturation
	8.2.4 Incubation
	8.2.5 Illumination
	8.2.6 Verification
	8.2.7 Game mechanics

	8.3 From theory to practice

	9 Feedback and communication
	9.1 Short feedback cycles
	9.2 Collecting feedback
	9.2.1 Sharing
	9.2.2 Short and simple

	9.3 Press ‘OK’ to cancel

	10 Flexible Design
	10.1 Playing the game
	10.2 Delaying decisions
	10.3 Set-based design
	10.3.1 Land of the Rising Sun
	10.3.2 Design more
	10.3.3 Design more to save money
	10.3.4 Solution Space
	10.3.5 Designing in modules

	11 Testing
	11.1 Verification and validation
	11.2 Testing in theory
	11.3 Practical approach
	11.4 Summary

	12 The EVE Method
	12.1 Experimentation
	12.2 Visualization
	12.3 Evaluation
	12.4 A day in the life of a rapid protot

	13 Conclusion
	14 Future research
	16 Appendix B – Postmortem source materi
	17 Bibliography

